

IRIO EPICS DEVICE
SUPPORT-V1.2.0
USER’s MANUAL

GETTING STARTED

INSTRUMENTATION AND APPLIED ACOUSTICS - RESEARCH GROUP

IRIO EPICS Device Support User’s Manual 1 www.i2a2.upm.es

Worldwide Technical Support and Product Information

Web: www.i2a2.upm.es

Support: irio@i2a2.upm.es

I2A2 Research Group – Technical University of Madrid

UPM Campus Sur,

Carretera de Valencia, km 7, 28031 Madrid

Phone: +34 91 3364696

Fax: +34 91 3364696

http://www.i2a2.upm.es/
mailto:irio@i2a2.upm.es

IRIO EPICS Device Support User’s Manual 2 www.i2a2.upm.es

Table of Contents

1 DOCUMENT STRUCTURE ... 4

1.1 Purpose and Scope .. 4

1.2 Overview .. 4

1.3 Assumptions .. 4

1.4 Document organization .. 4

1.5 References .. 4

1.6 Acronyms ... 5

2 FLEXRIO AND COMPACTRIO PLATFORM OVERVIEW 6

2.1 Brief FPGA basics .. 6

2.2 FPGA Design Tools .. 7

2.3 RIO platform architecture ... 7

2.3.1 RIO for PXI and PXIe .. 8

2.3.2 RIO for Compact Embedded Applications ... 10

3 IRIO EPICS DEVICE SUPPORT INSTALLATION .. 12

3.1 IRIO EPICS Device Support Release vs. Linux release .. 12

3.2 EPICS Device Support Release Notes ... 12

3.3 Software and Hardware environment .. 13

3.4 Installing the IRIO EPICS Device Support ... 14

3.4.1 Obtaining the source code .. 14

3.4.2 Installing NI RIO EPICS Device Support .. 14

3.5 Verification of the IRIO EPICS Device Support ... 15

3.5.1 Obtaining the IRIO EPICS Sample Unit source code Error! Bookmark not

defined.

3.5.2 Test of IRIO EPICS Device Support using IRIO EPICS Sample Application 17

3.6 Uninstalling IRIO EPICS Device Support ... 18

4 IRIO EPICS DEVICE SUPPORT FUNCTIONALITY ... 19

4.1 RIO device initialization function ... 19

4.2 RIO device data acquisition profiles supported. .. 20

4.3 Supported records .. 22

4.3.1 Interfaces and reasons used .. 23

4.3.2 Records description .. 25

5 IRIO EPICS DEVICE SUPPORT USE IN I&C APPLICATION 35

5.1 Download LabVIEW templates to create EPICS Application examples 35

5.2 Create I&C Applications manually .. 35

5.2.1 Create the sample unit .. 35

5.2.2 Configure the unit, the application and the IOC ... 36

APPENDIX A RECORD TEMPLATES ... 43

IRIO EPICS Device Support User’s Manual 3 www.i2a2.upm.es

A.1. Records of common resources for all RIO devices .. 43

A.2. Records used by Point by Point profile .. 47

A.3. Records used by Data Acquisition profile .. 47

A.4. Records used by Image Data Acquisition Profile. ... 48

A.5. Records for optional resources .. 53

A.6. Waveform generator .. 55

IRIO EPICS Device Support User’s Manual 4 www.i2a2.upm.es

1 DOCUMENT STRUCTURE

1.1 Purpose and Scope

This document describes the IRIO EPICS Device Support V1.2.0 and the different interfaces to

use for application development. This document does not cover technical details about how the

EPICS driver is implemented.

Resource Description Version Public Release

IRIO EPICS Device

Support
1.2.0 https://github.com/irio-i2a2/irioepics/releases

1.2 Overview

CompactRIO and FlexRIO technologies allow the implementation of data acquisition and control

system for a broad range of applications. Both hardware platforms are based on the use of an

FPGA and different input/output elements that provide a highly configurable solution. These

hardware platform are the opposite of traditional DAQ solutions where functionalities are

defined by manufacturer and cannot be changed. The implementation of an EPICS device driver

using a configurable hardware platform is an interesting challenge. This user manual explains

the use of the EPICS device driver designed to interface a configurable solution using cRIO and

FlexRIO. The use of this driver implies that hardware implementation in the FPGA meets a set

of rules already defined in IRIO Design Rules for LabVIEW for FPGA document Error!

Reference source not found.. Only if your implementation meets these rules you can use this

EPICS device driver.

1.3 Assumptions

It is assumed that ScientificLinux 6.8/RHEL 6.5 with at least one CompactRIO or FlexRIO is

installed. The NI-RIO Linux Device Driver and IRIO Software Library must be previously

installed to use this EPICS device support. Additionally, you need to use a hardware

implementation for the FPGA developed using the design rules. It is assumed that the user is

familiar with some basic knowledge about EPICS [RD1].

1.4 Document organization

Section 2 presents a basic summary of FPGA technology and main RIO platform features.

Section 3 covers the basic release information, how to verify that the software is installed and a

basic troubleshooting. Section 4 presents the functionality of the IRIO EPICS Device Support

and finally section 5 explains how to use the IRIO EPICS Device Support in I&C applications.

1.5 References

[RD1] EPICS Application Developer’s Guide

IRIO EPICS Device Support User’s Manual 5 www.i2a2.upm.es

(http://www.aps.anl.gov/epics/base/R3-15/0-docs/AppDevGuide.pdf)

[RD2] IRIO Design Rules for LabVIEW for FPGA document

[RD3] IRIO Device Driver User Manual

[RD4] AsynDriver (www.aps.anl.gov/epics/modules/soft/asyn/)

[RD5] IRIO Library User’s Manual

[RD6] EDT Camera Link Simulator (CLS) Family

http://edt.com/downloads/20141111_PCI-PCIeDvCLS_Rev0004-2.pdf)

[RD7] IRIO EPICS Device Support Traceability Matrix

1.6 Acronyms

AI Analog Input

AO Analog Output

ASIC Application Specific Integrated Circuit

CLB Configurable Logic Blocks

cRIO Compact RIO

DI Digital Input

DMA Direct memory Access

DO Digital Output

FPGA Field Programmable Gate Array

FlexRIO Flexible RIO

HDD Hard Disk Drive

HDL Hardware Description Language

HMI Human-Machine Interface

I/O Input/Output

IOC Input / Output Controller

IRIO Intelligent RIO

LUT Look-Up Tables

NI National Instruments

OTP OneTime Programmable

PC Personal computer

PV Process Variable

PCI Peripheral Component Interconnect

PCIe PCI express

PXI PCI extension for Instrumentation

PXIe PXI express

RAM Random Access Memory

RIO Reconfigurable Input/Output

SRAM Static RAM

TCP Transmission Control Protocol

VI Virtual Instrument

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

http://www.aps.anl.gov/epics/base/R3-15/0-docs/AppDevGuide.pdf
http://www.aps.anl.gov/epics/modules/soft/asyn/
http://edt.com/downloads/20141111_PCI-PCIeDvCLS_Rev0004-2.pdf)

IRIO EPICS Device Support User’s Manual 6 www.i2a2.upm.es

2 FLEXRIO AND COMPACTRIO PLATFORM OVERVIEW

2.1 Brief FPGA basics

Field Programmable Gate Arrays (FPGAs) are programmable semiconductor devices that are

based around a matrix of Configurable Logic Blocks (CLBs) connected through programmable

interconnections. As opposed to Application Specific Integrated Circuits (ASICs), where the

device is custom built for the particular design, FPGAs can be programmed to the desired

application or functionality requirements. Common type of FPGAs are SRAM-based where the

modelled hardware hosted can be changed when the design evolves. Figure 1Error! Reference

source not found. depicts the main elements which the FPGA is composed by.

Figure 1: Schema of the elements in a FPGA

The configurable logic blocks (CLBs), slices or logic cells, -depicted in Figure 2- are the basic

logic unit of an FPGA. They are made up of: a configurable switch matrix with 4 or 6 inputs;

some selection circuitry, like multiplexers; and flip-flops. Various FPGA families differ in the

way flip-flops and LUTs are packaged together. The switch matrix is highly flexible and can be

configured to handle combinatorial logic, shift registers or RAM.

Figure 2: Configurable Logic Block Structural Scheme

The flexible interconnection of the FPGA routes the signals between CLBs and I/Os. There are

different types of routing, from the interconnection between CLBs to fast horizontal and vertical

IRIO EPICS Device Support User’s Manual 7 www.i2a2.upm.es

lines crossing the device to global low-skew routing for clocking and other global signals. The

design software makes the interconnection routing task hidden to the user, unless necessity,

significantly reducing design complexity. I/Os in FPGAs are grouped in banks with each bank

independently able to support different I/O standards. Today’s FPGAs provide over a dozen I/O

banks, thus allowing flexibility in I/O support. Embedded Block RAM memory is available in

most FPGAs, which allows for on-chip memory in your design. Digital clock management is

provided by most FPGAs in the industry and also phase-looped locking that provide precision

clock synthesis combined with jitter reduction and filtering.

Memory resources are another key specification to consider when selecting FPGAs. Depending

on the FPGA family the on-board RAM can be configured in different block sizes. Digital signal

processing algorithms often need to keep track of an entire block of data, or the coefficients of a

complex equation, and without on-board memory, many processing functions do not fit within

the configurable logic of a FPGA chip.

2.2 FPGA Design Tools

The way to build the logic that will be placed in the FPGA is modelling the behaviour of the

system using development tools and then compile them down to a configuration file or bitstream

that contains information on how the components should be wired together.

Hardware description languages (HDLs) such as VHDL and Verilog are textual languages for

architecting a circuit. The syntax requires signals to be mapped or connected from external I/O

ports to internal signals, which ultimately are wired to the modelled hardware entities. However,

the modelled hardware behaviour is hard to be visualized in a sequential line-by-line flow textual

language. For the verification of the logic created is a common practice to write test benches in

HDL to wrap around and exercise the FPGA design by asserting inputs and verifying outputs.

The test bench and FPGA code run in a simulation environment that models the hardware timing

behaviour of the FPGA chip and displays the input and output signals to the designer for test

validation. The process of creating the HDL test bench and executing the simulation requires at

least four times more than creating the original FPGA HDL design itself. Once the text-based

model of the hardware is verified through several steps, synthesizes the HDL down into a

configuration file or bitstream that contains information on how the components should be wired

together. As part of this multi-step process, mapping of signal names to the pins on the FPGA

chip have to be done. The rise of high-level synthesis (HLS) design tools, such as NI LabVIEW

system design software, changes the rules of FPGA modelling and delivers new technologies

that convert graphical block diagrams into digital hardware circuitry. The LabVIEW

programming environment is suited for FPGA modelling being easier for the designer to

recognize parallelism and data flow. Also VHDL can be integrated into LabVIEW FPGA designs.

To simulate and verify the behaviour of your FPGA logic, LabVIEW offers features directly in

the development environment. LabVIEW FPGA compilation tools automate the compilation

process, highlighting errors, if occur, and critical paths if timing errors appears in the design.

2.3 RIO platform architecture

The reconfigurable I/O (RIO) architecture combines the graphical programming environment

with a reconfigurable FPGA and I /O Modules for measurement and/or data acquisition, see

Figure 3. FPGAs permits creating highly customizable and reconfigurable platforms

implementing processing and control tasks with hardware circuitry and the capacity to perform

multi-parallel operations within a single clock cycle. The reconfigurable FPGA is the core of the

RIO hardware system architecture, it is directly connected to the I/O modules for high-

IRIO EPICS Device Support User’s Manual 8 www.i2a2.upm.es

performance access to the I/O circuitry of each module and high timing, triggering, and

synchronization flexibility. Because each module is connected directly to the FPGA rather than

through a shared bus, there is almost no control latency for system response compared to other

industrial controllers.

Figure 3: NI RIO Architecture Diagram

2.3.1 RIO for PXI and PXIe

National Instruments offers a catalog with PXI and PXIe FPGA-based data acquisition devices.

PXIe (PCIe eXtensions for Instrumentation) is a rugged, modular instrumentation platform

designed for high-performance applications. It combines PCI and PCI Express bus technologies

with a specialized synchronization bus. PXI Express takes advantage of the PCI Express bus to

offer a point-to-point bus topology that gives each device its own direct access to the bus with

up to 4 GB/s of throughput. The integrated timing and synchronization lines are used to route

synchronization clocks and triggers internally. A PXI chassis incorporates a dedicated 10 MHz

system reference clock, PXI trigger bus, star trigger bus, and slot-to-slot local bus, while a PXI

Express chassis adds a 100 MHz differential system clock, differential signalling, and differential

star triggers for advanced timing and synchronization. The manufacturer catalog includes two

different technologies named R-Series and FlexRIO. R-Series are Multifunction DAQ boards.

They can measure and generate a wide variety of signals at different sampling rates. R Series

multifunction RIO devices integrates FPGA technology with analog inputs, analog outputs, and

digital I/O lines into a single device. This devices support the PCI, PCI Express, PXI, and USB

buses, with enclosed and board- only options available. Also feature a dedicated ADC per

channel, providing multirate sampling and individual channel triggering. FlexRIO technology

is described in the following paragraph.

2.3.1.1 FlexRIO

FlexRIO devices consist of a large FPGA, as well as adapter modules that provide high-

performance analog and digital I/O. The adapter modules are interchangeable and define the I/O

in the LabVIEW FPGA programming environment.

NI FlexRIO FPGA modules feature, as seen in Table 1: FlexRIO devices, Xilinx Virtex-5 and

Kintex-7 FPGAs, on-board dynamic RAM (DRAM), and an interface to NI FlexRIO adapter

modules that provide I/O to the FPGA. The adapter module interface consists of 132 lines of

general-purpose digital I/O directly connected to FPGA pins, in addition to the power, clocking,

and supplementary circuitry necessary to define the interface. Adapter modules are instantiated

as a part of the LabVIEW project in a Component- Level Intellectual Property (CLIP) and the

I/O interaction is provided by LabVIEW interfaces. Table 1 shows the full range of adapter

modules provided

IRIO EPICS Device Support User’s Manual 9 www.i2a2.upm.es

Table 1: FlexRIO devices

Model Bus FPGA
FPGA

Slices

FPGA

DSP Slices

FPGA

Memory

(Block

RAM)

Onboard

Memory

Supported by IRIO

Library V1.2.0

PXIe-7975R PXIe
Kintex-7

XC7K410T
63,550 1,540 28,620 kbits 512 MB 

PXIe-7966R PXIe
Virtex-5 SX95T

-2
14,720 640 8,784 kbits 512 MB 

PXIe-7965R PXIe Virtex-5 SX95T 14,720 640 8,784 kbits 512 MB 

PXIe-7962R PXIe Virtex-5 SX50T 8,160 288 4,752 kbits 512 MB 

PXIe-7961R PXIe Virtex-5 SX50T 8,160 288 4,752 kbits 0 MB 

PXI-7954R PXI Virtex-5 LX110 17,280 64 4,608 kbits 128 MB 

PXI-7953R PXI Virtex-5 LX85 12,960 48 3,456 kbits 128 MB 

PXI-7952R PXI Virtex-5 LX50 7,200 48 1,728 kbits 128 MB 

PXI-7951R PXI Virtex-5 LX30 4,800 32 1,152 kbits 0 MB 

Table 2: FlexRIO adapter modules

Adapter module Supported by IRIO Library V1.2.0

NI 5791 100 MHz Bandwidth RF Transceiver Supported on demand

NI 5792 200 MHz Bandwidth RF Receiver Supported on demand

NI 5793 200 MHz Bandwidth RF Transmitter Supported on demand

NI 5781 100 MS/s Baseband Transceiver Supported on demand

NI 5782 250 MS/s IF Transceiver Supported on demand

NI 5731 12-Bit, 40 MS/s, 2 Channel Digitizer NI 5732

14-Bit, 80 MS/s, 2 Channel Digitizer
Supported on demand

NI 5733 16-Bit, 120 MS/s, 2 Channel Digitizer NI

5734 16-Bit, 120 MS/s, 4 Channel Digitizer
Supported on demand

NI 5751 14-Bit, 50 MS/s,16 Channel Digitizer Supported on demand

NI 5752 12-Bit, 50 MS/s, 32 Channel Digitizer Supported on demand

NI 5761 14-bit, 250 MS/s, 4 Channel Digitizer 

IRIO EPICS Device Support User’s Manual 10 www.i2a2.upm.es

Adapter module Supported by IRIO Library V1.2.0

NI 5762 16-Bit, 250 MS/s, 2 Channel Digitizer Supported on demand

NI 5771 8-Bit, 3GS/s, 2 Channel Digitizer Supported on demand

NI 5772 12-Bit, 1.6GS/s, 2-Channel Digitizer Supported on demand

NI 5781 14-Bit, 100 MS/s,2 Channel Baseband

Transceiver


AT-1120 14-Bit, 2GS/s, 1-Channel Signal Generator Supported on demand

AT-1212 14-Bit, 1.2GS/s, 2-Channel Signal

Generator
Supported on demand

NI 6581 200 Mbit/s, 54 Channel, Single Ended

Digital I/O


NI 6583 300 Mbit/s, 32 SE and 16 LVDS Channel

Digital I/O NI 6584 16 Mbit/s, 16 Ch, RS-422/RS-

485 Digital I/O

Supported on demand

NI 6585 200 Mbit/s, 32 Channel, LVDS Digital I/O

NI 6587 1 Gbit/s, 20 Channel, LVDS Digital I/O
Supported on demand

NI 1483 Full Configuration Camera Link 

2.3.2 RIO for Compact Embedded Applications

CompactRIO is a small, rugged RIO system for embedded and prototyping applications,

configurable with four, eight, and fourteen slot backplanes. It contains two main components: a

reconfigurable FPGA in a chassis, and the interchangeable industrial I/O modules. The

CompactRIO system can be connected to a computer using a PCIe link. The embedded chassis

contains the reconfigurable I/O FPGA chip directly connected to I/O modules that deliver diverse

high-performance I/O capabilities. cRIO chassis and I/O modules available are listed in Table 3:

Table 3: cRIO chassis and I/O modules available

cRIO item

9425: Sinking Digital Input 7 µs, 32 channels 12 / 24 V

9426: Sourcing Digital Input 7 µs, 32 channels 12 / 24 V

9476: Sourcing (500µs / 6-36V / 250 mA Digital Output 32

channels

9477: Sinking (8 µs / 5-60V / 625 mA) Digital Output 32

channels

9205: 32 x AI (16-bit, ±200mV to ±10V) 250 kS/s

IRIO EPICS Device Support User’s Manual 11 www.i2a2.upm.es

cRIO item

9264: 16 x AO (16-bit, ±10V, isolation 60 VDC) 25 kS/s/ch

(simultaneous)

IRIO EPICS Device Support User’s Manual 12 www.i2a2.upm.es

3 IRIO EPICS DEVICE SUPPORT INSTALLATION

This chapter explains: IRIO EPICS device support release information and history, the

Software/Hardware environment, how to install the required software, how to verify that the

software is installed correctly and how to uninstall it.

3.1 IRIO EPICS Device Support Release vs. Linux release

Table 4: EPICS device support vs. IRIO Library vs. Linux release

EPICS

Device

Support

Version

Release

Date

EPICS

device

Support

User Manual

IRIO

Library

Version

NI-RIO Linux

Device Driver
Linux Version Supported

1.2.0 Jan-2017 1.2.0 1.2.0 15.0.0
ScientificLinux 6.8 and

RHEL6

3.2 EPICS Device Support Release Notes

EPICS

Device

Support

Version

Release Description

1.2.0  IRIO EPICS Device Support supports its installation over ScientificLinux 6.8

1.1.2

 Code revision to avoid segFault due to portName misconfiguration.

 Solved problem with buffersize overwrite in image acquisition profile.

 Fixed duplicate template versions causing sdd-sync to fail on database initialization

 SR PV HOPR and DRVH fields modified from 100MS/s to 125MS/s.

 DMAsOVERFLOWs PV SCAN field set to .1 second

1.1.1

 I/O Intr scan support for AI and DI without use of DMA.

 New EPICS PVs added to device support:

 SR_AI_INTR: SamplingRate of AI# with SCAN=I/O Intr.

 SR_DI_INTR: SamplingRate of DI# with SCAN=I/O Intr.

 TSE=-2 supported. New irioTimeStamp function registered.

 RIO boards serial name format change.

Due to a change in the low level NI-RIO Linux driver, the RIO device serial

number, given by lsrio.py command, that is used as a string argument to the driver

initialization call has to be prefixed with "0x" (case sensitive).

Old-nirioinit("RIO_0","01A2D92C","NI 9159","cRIOIO_9159","V1.1",1)

New-nirioinit("RIO_0","0x01A2D92C","NI 9159","cRIOIO_9159","V1.1",1)

Note: The serial number that must be used in nirioinit function call is always the

output of lsrio.py command

 In SDD-Editor: compactRIO board renamed to NI9159 board.

IRIO EPICS Device Support User’s Manual 13 www.i2a2.upm.es

EPICS

Device

Support

Version

Release Description

1.1.0

 EPICS IOC log support added.

 dbior support added.

 New EPICS PVs added to device support:

 EPICSVERSION: EPICS irio driver version.

 DRIVERVERSION: IRIO driver version.

 DEVICENAME: RIO device name.

 SERIALNUMBER: RIO device serial number.

 STATUS: RIO device status.
 STATUS-STR: RIO device status additional information.

 EPICS Device Support handles user´s misconfiguration.

Note: Traceability Matrix between IRIO EPICS device driver, IRIO Library, NI-RIO Linux

Device Driver and FPGA resources added as reference.

1.1.0

 PVs and Templates supporting the use of cRIO and FlexRIO.

 Hardware supported.

 NI 9159 MXIe 14 Slot Reconfigurable RIO Chassis, LX 110 FPGA included in CCS.
 NI 9205 32-Ch ±200 mV to ±10 V, 16-Bit, 250 kS/s Analog Input Module included in CCS.

 NI 9264 ±10 V, 25 kS/s/ch, 16 Ch, Analog Output Module included in CCS.

 NI 9476 / NI 9477 Sourcing (500µs / 6-36V / 250 mA) and Sinking (8 µs / 5-60V / 625 mA),

32 channels, Digital Output Module included in CCS.

 NI 9425 / NI 9426 Sinking / Sourcing, 7 µs, 32 channels, 12 / 24 V, Digital Input Module

included in CCS.

 FlexRIO:

 NI PXIe-7961R NI FlexRIO FPGA Module (Virtex-5 SX50T) included in CCS.

 NI PXIe-7966R NI FlexRIO FPGA Module (Virtex-5 SX95T, 512MB RAM)

included in CCS.

 NI 1483 Camera Link Adapter Module for NI FlexRIO included in CCS.

 NI 5761 250 MS/s, Digitizer Adapter Module for NI FlexRIO included in CCS.

 NI 6581 100MHz DIO (54 Channel) NI FlexRIO Adapter Module included in CCS.

 SDD Support for I&C Application development added for:

 cRIO

 FlexRIO bundles

3.3 Software and Hardware environment

The table below identifies the hardware, software, and other resources needed to install and run

the software.

Table 5. IRIO EPICS Device Support Software and Hardware environment

Type Description Manufacture Version

Software Scientific Linux Fermilab/CERN/DESY/ETHZ. 6.8

Software EPICS Base Open Source. Many contributors 3.15.4

Software AsynDriver APS/CARS: Mark Rivers R4-30

Software Busy APS/AOD/BCDA: Tim Mooney R1.6.1

Software Sscan APS/AOD/BCDA: Tim Mooney R2-10

http://www.fnal.gov/
http://cern.ch/
http://desy.de/
http://ethz.ch/
http://ftp.scientificlinux.org/linux/scientific/6.8/
http://www.aps.anl.gov/epics/base/
http://www.aps.anl.gov/epics/modules/soft/asyn/index.html
http://www.aps.anl.gov/bcda/synApps/busy/busy.html
http://www.aps.anl.gov/bcda/synApps/sscan/sscan.html

IRIO EPICS Device Support User’s Manual 14 www.i2a2.upm.es

Type Description Manufacture Version

Software Autosave APS/AOD/BCDA: Tim Mooney R5-7-1

Software Calc APS/AES/BCDA: Tim Mooney R3-6-1

Software IRIO library I2A2-UPM/ITER 1.2.0

Software
NI-RIO Linux Device

Driver
National Instruments 15.0.0

Software
IRIO EPICS Device

Support
ITER/UPM 1.2.0

Hardware
PC (HDD > 10G, RAM >

2G)
N/A N/A

Hardware

FlexRIO card with adapter

module or cRIO chassis

with I/O Modules

National Instruments N/A

3.4 Installing the IRIO EPICS Device Support

This section describes how to install and check the IRIO EPICS Device Support.

NOTE: NI-RIO Linux Driver 15.0 + EPICS Base + SynApps + IRIO Library must be previously
installed. Click here for more information.

3.4.1 Obtaining the source code

IRIO EPICS Device Support software is hosted under GitHub, a web-based Git repository

hosting service.

Download IRIO EPICS Device Support software from: https://github.com/irio-

i2a2/irioepics/releases

3.4.2 Installing NI RIO EPICS Device Support

1. Untar irioepics-v1.2.0

2. Verify that irioepics-v1.2.0 includes at least, the following content:

http://www.aps.anl.gov/bcda/synApps/autosave/autosave.html
http://www.aps.anl.gov/bcda/synApps/calc/calc.html
https://github.com/irio-i2a2/IRIO_Library
http://www.ni.com/download/ni-rio-15.0/5603/en/
http://www.i2a2.upm.es/idi/instrumentacion-aplicada/sistemas-de-adquisicion-de-datos-avanzados-2/irio-software-tools-installation/
https://github.com/irio-i2a2/irioepics/releases
https://github.com/irio-i2a2/irioepics/releases

IRIO EPICS Device Support User’s Manual 15 www.i2a2.upm.es

3. Move the folder irioepics-v1.2.0 to /opt/epics/support

4. Edit file /opt/epics/support/irioepics-v1.2.0/src/main/epics/configure/RELEASE setting

complete path of EPICS_BASE, SUPPORT and ASYN.

 EPICS_BASE = /opt/epics/base-3.15.4

 SUPPORT = /opt/epics/support

 ASYN = $(SUPPORT)/asynR4-30

5. Navigate to /opt/epics/support/irioepics-v1.2.0 and execute:

 $ sudo make

 $ sudo make install

3.4.3 Verification of IRIO EPICS Device Support correct installation.

The IRIO EPICS Device Support is installed under /opt/epics/support folder.

Verify that /opt/epics/support/irioepics-v1.2.0/src/main/epics folder exist and includes at least

the following content:

IRIO EPICS Device Support User’s Manual 16 www.i2a2.upm.es

IRIO EPICS Device Support User’s Manual 17 www.i2a2.upm.es

3.5 Test of IRIO EPICS Device Support using IRIO EPICS

Sample Application

In order to test the IRIO EPICS Device Support an IRIO EPICS Sample Unit is available under

GitHub repository.

This unit includes five applications that test cRIO and FlexRIO platforms with all data

acquisition profiles:

 cRIOIO: compactRIO application using direct I/O data acquisition profile.

 cRIODMA: compactRIO application using DMA data acquisition profile.

 fRIO5761: FlexRIO application using DMA data acquisition profile. This application

needs a PXIe7966/7965 + NI 5761 (AC/DC) adapter module. (Analog data acquisition)

 fRIO6581: FlexRIO application using DMA data acquisition profile. This application

needs a PXIe7966/7965/7961 + NI 6581 adapter module. (Digital data acquisition)

 fRIO1483: FlexRIO application using Image data acquisition profile. This application

needs a PXIe7966/7965 + NI 1483 adapter module. (Image data acquisition)

3.5.1 Obtaining the IRIO EPICS Sample Unit source code

IRIO EPICS Sample Unit is hosted under GitHub, a web-based Git repository hosting service.

Download IRIO EPICS Sample Unit from: https://github.com/irio-

i2a2/irio_epics_Sample/releases

3.5.2 Configure IRIO EPICS Sample Unit

After the IRIO EPICS Device Support is correctly installed, execute the following command to

list the RIO devices available.

$ lsni –v

The output will be similar to this, depending on the configuration of your PC.

https://github.com/irio-i2a2/irio_epics_Sample/releases
https://github.com/irio-i2a2/irio_epics_Sample/releases

IRIO EPICS Device Support User’s Manual 18 www.i2a2.upm.es

The nirioinit function must be modified with specific user’s configuration. The FPGA number

(i.e 7966, 7965, 7961,etc) and the Serial Number must be set correctly in st.cmd file of each IOC,

st.cmd file path is: /opt/epics/support/irio_epics_sample/iocBoot/ioc<application_name>, i.e.:

nirioinit("RIO_0","019ED079","NI 9159","cRIODAQDMA_9159","V1.1",1)

3.5.3 Compile IRIO EPICS Sample Unit and Run IOCs

Execute next command to compile the unit

$ cd /opt/epics/support/irio_epics_sample

$ sudo make

Execute next command to run IOCs

$ cd iocBoot/ioc<application_name>

$../../bin/linux_x86/<application_name>App st.cmd

3.6 Uninstalling IRIO EPICS Device Support

The user needs super user permission.

Uninstall the software executing next commands:

$ cd /opt/epics/support/irioepics-v1.2.0

$ sudo make clean uninstall

IRIO EPICS Device Support User’s Manual 19 www.i2a2.upm.es

4 IRIO EPICS DEVICE SUPPORT FUNCTIONALITY

This chapter describes the IRIO EPICS Device Support function to initialize a RIO device,

describes all data acquisition profiles supported and necessary templates on each profile and

describes all supported records.

4.1 RIO device initialization function

The nirioinit function available from the st.cmd allows the user to initialize the IRIO EPICS

device support.

int nirioinit(const char *namePort,const char *DevSerial,const char

*PXInirioModel, const char *projectName, const char *FPGAversion,int

verbosity)

This function registers all needed functionality of the ASYN driver used in this device support

and registers the port name provided with the function call. This function has to be added in the

usrPreDriverConf.cmd file, which is executed before the iocInit function in st.cmd file. Once the

function is executed the IRIO EPICS driver is ready to be used and records can connect using

asynDriver interfaces. All parameters needed are described in Table 6.

Parameters:

Table 6: Nirioinit function parameters description and restrictions.

Parameter

Name
Description Code Restriction Parameter Example

namePort

Port name to associate

with the selected

device.

The namePort must follow next format:

RIO_<portnumber>

And <portNumber> must be a value from 0

to 9.

RIO_0

DevSerial
Serial number of the

RIO device.

20 characters maximum. Must fix with the

serial number of the RIO device given by

lsrio.py command

0x0177A2AD

PXInirioMod

el
RIO device model. 20 characters maximum. PXIe7966R

projectName

Name identifying the

design to load in the

FPGA.

No maximum characters, but the

PROJECT_NAME have to be the same

used for headerfile and bitfile.

NiFpga_PROJECT_NAME.h

NiFpga_PROJECT_NAME.lvbitx

cRIODAQDMA_9159

FPGAVersio

n

Version of the bitfile

used.

4 characters maximum. Must be with this

format: “Vx.y” x and y must be the same

values used in the FPGA design.

V1.1

verbosity Parameter for

displaying internal

No code restriction.

0: Do not print IRIO Library messages.
1

IRIO EPICS Device Support User’s Manual 20 www.i2a2.upm.es

Parameter

Name
Description Code Restriction Parameter Example

driver messages for

debugging purposes.

Other: Print IRIO Library messages.

4.2 RIO device data acquisition profiles supported.

cRIO and FlexRIO devices support different data acquisition profiles. cRIO devices support two

different profiles: point by point data acquisition profile and DMA data acquisition profile.

FlexRIO devices supported profiles depend of the bundle. fRIO7966R-NI5761 and fRIO7961R-

NI6581 support DMA data acquisition profile and fRIO7966R-NI1483 supports Image data

acquisition profile.

Each profile needs a set of templates depending on the application to be implemented in the

RIO’s FPGA. This sets of templates are described in Table 7. M means mandatory and O is

optional. The rio-module.template is mandatory to all platforms and all profiles. rio-

pointbypoint.template, rio-dataacquisition.template, rio-

imageacquisition.template, rio-wf.template and rio-imagewf.template are

also mandatory depending on the profile chosen. The remaining templates are optional and

depends on the resources implemented in the FPGA.

For instance, for a cRIO implementation of the point by point data acquisition profile, the user

has to instantiate the mandatory templates: rio-module.template and rio-

pointbypoint.template. The remaining templates are optional depending on the final

application implemented in the cRIO system. For instance, if the user is using a NI9205 (Analog

Input module with 32 channels) the user can instantiate this template and use up to 32 input

channels (if implemented in the FPGA). Every channel will be identified using the address.

Table 7: Template identification

Target Profile Template Name
Mandatory

Optional

cRIO Point by Point Profile. Common resources
 rio-module.template

M

Point by Point

template
rio-pointbypoint.template M

 Analog Input rio-ai.template O

 Aux Analog Input rio-auxai.template O

 Analog Output rio-ao.template O

 Aux Analog Output rio-auxao.template O

 Digital Input rio-di.template O

 Aux Digital Input rio-auxdi.template O

 Digital Ouput rio-do.template O

IRIO EPICS Device Support User’s Manual 21 www.i2a2.upm.es

Target Profile Template Name
Mandatory

Optional

 Aux Digital Output rio-auxdo.template O

 Signal Generation rio-sg.template O

cRIO
DMA Data acquisition

Profile.
Common resources rio-module.template M

 Data Acquisition rio-dataacquisition.template M

 Waveforms rio-wf.template M

 Analog Input rio-ai.template O

 Aux Analog Input rio-auxai.template O

 Analog Output rio-ao.template O

 Aux Analog Output rio-auxao.template O

 Digital Input rio-di.template O

 Aux Digital Input rio-auxdi.template O

 Digital Ouput rio-do.template O

 Aux Digital Output rio-auxdo.template O

 Signal Generation rio-sg.template O

fRIO796x

NI5761
Data Acquisition Profile. Common resources

rio-module.template

M

 Data acquisition rio-dataacquisition.template M

 Waveforms rio-wf.template M

 Analog Input rio-ai.template O

 Aux Analog Input rio-auxai.template O

 Aux Analog Output rio-auxao.template O

 Digital Input rio-di.template O

 Aux Digital Input rio-auxdi.template O

 Digital Ouput rio-do.template O

 Aux Digital Output rio-auxdo.template O

 Signal Generation rio-sg.template O

fRIO796x Data Acquisition Profile. Common resources rio-module.template M

IRIO EPICS Device Support User’s Manual 22 www.i2a2.upm.es

Target Profile Template Name
Mandatory

Optional

NI6581

 Data acquisition rio-dataacquisition.template M

 Waveforms rio-wf.template M

 Aux Analog Input rio-auxai.template O

 Aux Analog Output rio-auxao.template O

 Digital Input rio-di.template O

 Aux Digital Input rio-auxdi.template O

 Digital Ouput rio-do.template O

 Aux Digital Output rio-auxdo.template O

 Signal –generation rio-sg.template O

fRIO 796x

NI1483
Image Acquisition Common resources

rio-module.template

M

 Image Acquisition
rio-

imageacquisition.template
M

 Image Waveform rio-imagewf.template M

 Aux Analog Input rio-auxai.template O

 Aux Analog Output rio-auxao.template O

 Digital Input rio-di.template O

 Aux Digital Input rio-auxdi.template O

 Digital Ouput rio-do.template O

 Aux Digital Output rio-auxdo.template O

4.3 Supported records

This section describes records used by IRIO EPICS Device Support. The records to be used

depend on the implementation done in the FPGA. Assuming that RIO’s FPGA contain a valid

design the records can connect to the different asynDriver interfaces for performing operations.

The number of records and their type is related with the profiles implemented in the FPGA.

Check the information provided by the designer to understand which PVs can be used. Process

Variable (PV) names follow I&C Signal Process Variable Naming Convention. This document

assumes that you are familiar with EPICS, and that EPICS Base, SynApps, iriolib-v1.2.0 and NI

RIO Linux Drriver 15.0 are installed. The IRIO EPICS driver is implemented as an Asyn port

driver. AsynDriver provides generic device support for standard EPICS records [RD4]. Refer to

IRIO EPICS Device Support User’s Manual 23 www.i2a2.upm.es

the Generic Device Support for EPICS records chapter for a detailed description. The Asyn

generic support uses the following conventions for DTYP and INP. OUT fields are the same as

INP.

field(DTYP,"asynXXX")

field(INP,"@asyn(portName,addr,timeout) drvParams")

where

 XXX-Supported interface type name.

 portName –Name of the port.

 Addr – Address of the port. If addr is not specified the default is 0.

 timeout - Timeout value for asynUser.timeout. If not specified the default is 1.0.

 drvParams – Optional value passed to the low level driver via the asynDrvUser

interface.

For example:

record(ai, "$(PORT_NAME):AI$(ADDR ") {

field(SCAN, "1 second")

field(DTYP, "asynInt32")

field(INP, "@asyn($(PORT_NAME),$(ADDR))AI")

}

The IRIO EPICS driver implements the common, asynDrvUsr, asynOctet, asynInt8Array,

asynInt32, asynInt32Array, asynFloat64 and asynFloat32Array interfaces. The driver uses

addresses to select the channel when applicable. The interface parameters are described in

subsequent sections.

Explanations. Common resource Records must be used in all RIO-based

applications: cRIO and FlexRIO

4.3.1 Interfaces and reasons used

The asynDriver uses the following interfaces and reasons:

Table 8: Interface, reason and address summary

Interface Reason Address

OctetRead epics_version N/A (0)

 VIversion N/A (0)

 driver_version N/A (0)

 device_serial_number N/A (0)

 FPGAStatus N/A (0)

 InfoStatus N/A (0)

 UARTReceive Group of Channels

IRIO EPICS Device Support User’s Manual 24 www.i2a2.upm.es

Interface Reason Address

OctetWrite UARTTransmit Group of Channels

Int32Read/Write FPGAStart N/A (0)

 DAQStartStop N/A (0)

 debug N/A (0)

 DevQualityStatus N/A (0) (only Int32Read)

 riodevice_status N/A (0) (only Int32Read)

 SR_AI_Intr N/A (0)

 SR_DI_Intr N/A (0)

 GroupEnable Group of Channels

 SamplingRate Group of Channels

 DMAsOverflow
Group of Channels (only

Int32Read)

 DF Group of Channels

 AOEnable Channel

 SGFreq Channel

 SGUpdateRate Channel

 SGSignalType Channel

 SGPhase Channel

 DI Channel

 DO Channel

 auxAI Channel

 auxAO Channel

 auxDI Channel

 auxDO Channel

 CLSignalMapping Group of Channels

 CLConfiguration Group of Channels

 CLLineScan Group of Channels

 CLFVALHigh Group of Channels

IRIO EPICS Device Support User’s Manual 25 www.i2a2.upm.es

Interface Reason Address

 CLLVALHigh Group of Channels

 CLDVALHigh Group of Channels

 CLSpareHigh Group of Channels

 UARTBreakIndicator
Group of Channels (only

Int32Read)

 UARTFrammingError
Group of Channels (only

Int32Read)

 UARTOverrunError
Group of Channels (only

Int32Read)

 CLSizeX Group of Channels

 CLSizeY Group of Channels

Float64Write AO Channel

 SGAmp Channel

Float64Read DeviceTemp Channel

 AI Channel

 AO Channel

 SGAmp Channel

Float32ArrayRead CH Channel

Int8ArrayRead CH Channel

4.3.2 Records description

This section describes the functionality of all records included in each profile. The templates of

all records are included in Error! Reference source not found..

All record templates are located in irioepics/src/main/epics/irio-epicsApp/Db.

4.3.2.1 Records used by all profiles.

This section describes all mandatory PVs used to manage common resources in cRIO or FlexRIO

implementations. PVs described in this section are included in rio-module.template.

 FPGASTART

Use this bo record to run the VI in the FPGA. Reason: FPGAStart.

IRIO EPICS Device Support User’s Manual 26 www.i2a2.upm.es

1 = ON value to trigger the initialization of the driver and the execution of the hardware

implemented in the FPGA.

0 = OFF value when the FPGA is not running or the driver is not initialized (in case the FPGA

was running with the same bitfile before launching the application).

Warning. FPGA just can be stopped with exit command from IOC shell.

 FPGAVIVERSION

This stringin record allows to retrieve the version of the VI implemented in the FPGA. The VI

version contains a mayor and a minor value. Reason: VIversion.

 DEVICETEMP

This ai record allows to read the temperature of the RIO device in Celsius degrees. Reason:

DeviceTemp.

 DAQSTARTSTOP

This bo record starts/stop the data acquisition process in the RIO device. Reason: DAQStartStop.

1 = ON value starts the data acquisition.

0 = OFF value stops the data acquisition.

 DEBUGMODE

This bo record sets the FPGA in debug mode. The behaviour of debug mode is defined by the

hardware developer. Check the specific implementation to know how debug mode is

implemented. With the debugmode activated the FPGA generates the values for the PVs. Reason:

debug.

1 = ON value enables debug mode.

0 = OFF value disables debug mode.

 DEVQUALITYSTATUS

This ai record retrieves the status of the data acquisition devices in terms of quality. For instance

a DAQ device can be measuring poor signals degraded by a poor S/N ratio. DevQualityStatus

can give the user this information. The developer have to define the values obtained with this

PV. Reason: DevQualityStatus.

 EPICSVERSION

This stringin record gives the IRIO EPICS driver version. Reason: epics_version.

IRIO EPICS Device Support User’s Manual 27 www.i2a2.upm.es

 DRIVERVERSION

This stringin record gives the IRIO library version. Reason: driver _version.

 DEVICENAME

This stringin record gives the RIO device name. RIO device name is provided by NI-RIO Linux

Device Driver. Reason: device_name.

 SERIALNUMBER

This stringin record gives the RIO device serial number. Reason: serial_number.

 STATUS

This mbbi record gives the RIO device status. Reason: riodevice_status.

Possible statuses are:

Table 9: RIO device STATUS PV description.

Status Description

Ok
If nirioinit function call returns success and FPGASTART is ON and every dynamic

configuration is success.

Initializing Status during initialization process.

Resetting N/A

Hardware Error NIRIO API error.

No Board Initial state. nirioinit function not called during IOC initialization or Hardware not found.

StatConf error

Bitfile download error, list RIO devices command error, list RIO devices parsing error,

signature not found, memory allocation error, file access error, file not found error, feature

not implemented, signature value not valid, resource value not valid, bitfile not found or

headerfile not found.

DynConf error Out of bound values configured.

Configured
If nirioinit function call returns success and FPGASTART is OFF and every dynamic

configuration is success.

HW_config_error InitDone error, IOModule error or hardware resource not found.

 FPGASTATUS

This stringin record is TBD. Reason: FPGAStatus.

 STATUS-STR

This stringin record gives a detailed information about the RIO device status. Reason: InfoStatus.

IRIO EPICS Device Support User’s Manual 28 www.i2a2.upm.es

 SR_AI_INTR

This ao record controls the sampling rate (Samples/s) used to read data by AI records with

SCAN=I/O Intr. See AI record description at point 4.3.2.5 to understand the use of this PV.

Reason: SR_AI_Intr

 SR_DI_INTR

This ao record controls the sampling rate (Samples/s) used to read data by DI records with

SCAN=I/O Intr. See DI record description at point 4.3.2.5 to understand the use of this PV.

Reason: SR_DI_Intr

4.3.2.2 Records used by Point by Point profile

Point by Point profile can be used by cRIO implementations. It supports all mandatory PVs

included in rio-module.template and in rio-pointbypoint.template and PVs

included in optional templates described in Table 7. This section describes PVs included in rio-

pointbypoint.template.

 SR_PBP

This ao record controls the sampling rate used for data acquisition. Reason: SamplingRate. Max

and Min values depend of hardware implementation. Maximum Sampling rate is the reference

frequency of the implementation and minimum sampling rate is the reference frequency divided

by 65535.

4.3.2.3 Records used by Data Acquisition profile

Data acquisition profile can be used by cRIO and FlexRIO (PXIe7966RNI5761 and

PXIe7961RNI6581 bundles) implementations. It supports all mandatory PVs included in rio-

module.template, rio-dataacquisition.template and rio-wf.template and

PVs included in optional templates described in Table 7.

This section describes PVs included in rio-dataacquisition.template. and rio-

wf.template (CH).

 GROUPENABLE

This bo record enables/disables writing data from DMA Target to DMA Host. Reason:

GroupEnable.

1 = ENABLE value to enable data transfer.

0 = DISABLE value to disable data transfer.

 SR

This ao record controls the sampling rate used for data acquisition. Reason: SamplingRate. Max

and Min values depend of hardware implementation. Maximum Sampling rate is the reference

IRIO EPICS Device Support User’s Manual 29 www.i2a2.upm.es

frequency of the implementation and minimum sampling rate is the reference frequency divided

by 65535.

 DMAsOVERFLOW

This bi record retrieve the status of each DMAs overflow in the device. Reason: DMAsOverflow.

0 = CORRECT value if no DMAs overflow.

1 = OVERFLOW value if DMAs overflow.

 DF

This ao record sets the block decimation factor of DMAs in the data acquisition process. Reason:

DF. Minimum DF value is 1 and Maximum DF value is 100000000.

 CH

This waveform record acquires data from DMA Host in arrays of $(NSAMPLE) elements every

interrupt generated from the asyndriver. Reason: CH.

4.3.2.4 Records used by Image Data Acquisition Profile

Image data acquisition profile can be used ONLY with FlexRIO PXIe7966RNI1483 bundle. It

supports all mandatory PVs included in rio-module.template, rio-

imageacquisition.template and rio-imagewf.template and PVs included in

optional templates described in Table 7. This section describes PVs included in rio-

imageacquisition.template. (GROUPENABLE, DMAsOVERFLOW, DF,

SIGGNALMAPPING, CONFIGURATION, LINESCAN, FVALHIGH, LVALHIGH,

DVALHIGH, SPAREHIGH, UARTRECEIVE, UARTTRANSMIT, UARTBREAK,

UARTFRAMEeRR, UARTOVERRUN, SIZEX and SIZEY) and rio-imagewf.template

(CH, IMAGE AND IMAGESIZE)

 GROUPENABLE

This bo record enables or disables writing data from DMA Target to DMA Host. Reason:

GroupEnable.

1 = ENABLE value to enable data transfer.

0 = DISABLE value to disable data transfer.

 DMAsOVERFLOW

This bi record retrieve the status of each DMAs overflow in the device. Reason: DMAsOverflow.

0 = CORRECT value if no DMAs overflow.

1 = OVERFLOW value if DMAs overflow.

 DF

IRIO EPICS Device Support User’s Manual 30 www.i2a2.upm.es

This ao record sets the block decimation factor of DMAs in the data acquisition process. Reason:

DF. Minimum DF value is 1 and Maximum DF value is 100000000.

 SIGNALMAPPING

This mbbo record sets the signal mapping for Cameralink. Reason: CLSignalMapping

0 = STANDARD value to configure image transfer for cameras using standard signal mapping

on Base, Medium and Full modes.

1 = BASLER10TAP value to configure image transfer for cameras using Basler signal mapping

on Extended mode with 80 bits per pixel clock.

2 = VOSKHULER10TAP value to configure image transfer for cameras using Voskhuler signal

mapping on Full mode with 80 bits per pixel clock

 CONFIGURATION

This mbbo record sets the configuration for Cameralink interface. Reason: CLConfiguration.

0 = BASE value to configure image transfer using CameraLink Base mode (1 cable).

1 = MEDIUM value to configure image transfer using CameraLink Medium mode (2 cables).

2 = FULL value to configure image transfer using CameraLink Full, Extended, and 10-tap

modes (2 cables).

 LINESCAN

This bo record enables/disables the line scan for Cameralink. Reason: CLConfiguration.

1 = ENABLE value to set for line scan cameras.

0 = DISABLE value to set for frame scan cameras.

 FVALHIGH

This bo record enables/disables the logic level used for the FVALHigh signal. Reason:

CLFVALHigh.

1 = ENABLE value to set for cameras using FVAL signal on active high mode.

0 = DISABLE value to set for cameras using FVAL signal on active low mode.

 LVALHIGH

This bo record enables/disables the logic level used for the LVALHigh signal. Reason:

CLLVALHigh.

1 = ENABLE value to set for cameras using LVAL signal on active high mode.

0 = DISABLE value to set for cameras using LVAL signal on active low mode.

 DVALHIGH

IRIO EPICS Device Support User’s Manual 31 www.i2a2.upm.es

This bo record enables/disables the logic level used for the DVALHigh signal. Reason:

CLDVALHigh.

1 = ENABLE value to set for cameras using DVAL signal on active high mode.

0 = DISABLE value to set for cameras using DVAL signal on active low mode.

 SPAREHIGH

This bo record enables/disables the logic level used for the Spare-High signal. Reason:

CLSpareHigh.

1 = ENABLE value to set for cameras using Spare signal on active high mode.

0 = DISABLE value to set for cameras using Spare signal on active low mode.

 UARTRECEIVE

The stringin record read the last buffer read by the cameralink uart. Reason: UARTReceive.

 UARTTRANSMIT

This stringout record allows to write a buffer in the cameralink uart. Reason: UARTTransmit.

 UARTBREAK

This bi record gets if UART break indicator is active or not. Reason: UARTBreakIndicator.

0 = UARTCORRECT value for correct UART message reception.

1 = UARTBREAK value when the received byte was part of a break condition (RX signal held

low longer than expected),

 UARTFRAMEeRR

This bi record gets if UART break frame error is active or not. Reason: UARTFrammingError.

0 = UARTCORRECT value for correct UART message reception.

1 = UARTFRAMEERROR value when the received byte did not have valid stop bit.

 UARTOVERRUN

This bi record gets if UART overrun error is active or not. Reason: UARTOverrunError.

0 = UARTCORRECT value when no UART data have been lost.

1 = UARTOVERRUN value when UART data have been lost due to a full receive buffer.

 SIZEX

This longout record sets the image size for X axis. Reason: CLSizeX. Minimum SizeX value is

1 and Maximum SizeX value is 1690.

IRIO EPICS Device Support User’s Manual 32 www.i2a2.upm.es

 SIZEY

This longout record sets the image size for Y axis. Reason: CLSizeY. Minimm SizeY value is 1

and Maximum SizeY value is 1710.

 CH

This waveform record gets the complete array of the image acquired by the framegrabber.

Reason: CH.

 IMAGE

This subarray record gets the image of X*Y.

 IMAGESIZE

This calcout record computes the image size X*Y.

4.3.2.5 Records used for optional resources

This section describes all PVs included in optional templates. See Table 10.

Table 10: Summary of PVs included in optional templates.

Optional template PVs included

rio-ai.template AI

rio-auxai.template auxAI

rio-ao.template AO and AOENABLE

rio-auxao.template auxAO

rio-di.template DI

rio-auxdi.template auxDI

rio-do.template DO

rio-auxdo.template auxDO

rio-sg.template
SGUPDATERATE, SGAMP, SGFREQ and

SGPHASE

 AI

This ai record has the value corresponding to an analog input. Reason: AI.

SCAN field supports “I/O Intr” in IRIO EPICS Device Support V1.1.1. The

“I/O Intr” functionality is implemented using a periodic thread reading the

AI FPGA terminals, because NI-RIO Linux Device Driver does not provide

IRIO EPICS Device Support User’s Manual 33 www.i2a2.upm.es

an interrupt functionality. The period of this thread is controlled by the

value specified in the PV named SR_AI_INTR.

 auxAI

This ai record has the value corresponding to an auxiliary analog input. Reason: auxAI.

 AO

This ao record value is the output of the analog output channel in the I/O Module. Only if

AOEnable is set to 1 = ENABLE, the AO value will be outputted throw the analog output channel

of the I/O Module. Reason: AO.

 AOENABLE

This bo record enables/disables the output of the analog output channel in the I/O Module.

Reason: AOEnable.

0 = DISABLE value disables the output throw the analog output channel.

1 = ENABLE value enables the output throw the analog output channel.

 auxAO

This ao record allow to write an internal register in the FPGA (auxiliary control). Reason: auxAO.

 DI

This bi record has the value of the digital input. Reason: DI.

SCAN field supports “I/O Intr” in IRIO EPICS Device Driver V1.1.1. The

“I/O Intr” functionality is implemented using a periodic thread reading the

DI FPGA terminals, because NI-RIO Linux Device Driver does not provide

an interrupt functionality. The period of this thread is controlled by the

value specified in the PV named SR_DI_INTR.

 auxDI

This bi record has the value of the auxiliary digital input. Reason auxDI.

 DO

This bo record writes a value on the digital output. Reason: DO.

 auxDO

This bo record writes a value on the auxiliary digital output. Reason: auxDO.

IRIO EPICS Device Support User’s Manual 34 www.i2a2.upm.es

 SIGNAL GENERATOR RECORDS

o SGUPDATERATE

This ao record allows to write the update rate in the signal generator. Engineering units

= Samples per second (S/s). Reason: SGUpdateRate.

o SGFREQ

This ao record sets the frequency of the signal generated in the FPGA. Engineering unit

= Herts (Hz). Reason: SGFreq.

o SGPHASE

This ao record sets the phase of the signal generated in the FPGA. Reason: SGPhase.

o SGAMP

This ao record sets the amplitude of the signal generated in the FPGA. Engineering unit = Volts

(V). Reason: SGAmp.

o SGSIGNALTYPE

This mbbo record configures the shape of the signal generated in FPGA. Reason: SGSignaltype.

0 = DC signal is generated in the internal signal generator.

1 = SINE signal is generated in the internal signal generator.

2 = SQUARE signal is generated in the internal signal generator.

3 = TRIANGLE signal is generated in the internal signal generator.

IRIO EPICS Device Support User’s Manual 35 www.i2a2.upm.es

5 IRIO EPICS DEVICE SUPPORT USE IN I&C

APPLICATION

This chapter describes how to use the IRIO EPICS driver (Asyn port driver) in an I&C

application and describes mandatory steps that will allow the proper software initialization and

the creation of EPICS variables interfaced with the device driver.

5.1 Download LabVIEW templates to create EPICS Application

examples

Download LabVIEW Templates from: https://github.com/irio-

i2a2/IRIO_LabVIEW_Test_Templates/releases and untar the package.

5.2 Create I&C Applications manually

This section describes how to create manually a software unit containing multiple applications

using RIO devices. The irio_epics_sample application build in this section can be found in the

following GitHub repository:

https://github.com/irio-i2a2/irio_epics_sample/releases

Users can find useful this unit to see how to configure properly their own examples.

5.2.1 Create the sample unit

Open a terminal window and execute next commands to create the unit folder.

$mkdir irio_epics_sample

$cd irio_epics_sample

Next command provides a list of the application templates available.

<base/>bin/<arch>/makeBaseApp.pl -l

$/opt/epics/base-3.15.4/bin/linux-x86/makeBaseApp.pl -l

Five different applications can be created (including IOCs) to use all IRIO EPICS Device

Support supported platforms and data acquisition profiles.

1. CompactRIO application (including IOC) using Point by point data acquisition profile.

Next command creates the application directories.

<base/>bin/<arch>/makeBaseApp.pl –t <type> <application_name>

Select: <type> = example ; <app> = cRIOIO

$/opt/epics/base-3.15.4/bin/linux-x86/makeBaseApp.pl –t example

cRIOIO

Next command creates the IOC boot directories.

<base/>bin/<arch>/makeBaseApp.pl –i –t <type> <ioc>

Select: <type> = example ; <ioc> = cRIOIO

https://github.com/irio-i2a2/IRIO_LabVIEW_Test_Templates/releases
https://github.com/irio-i2a2/IRIO_LabVIEW_Test_Templates/releases
https://github.com/irio-i2a2/irio_epics_sample/releases

IRIO EPICS Device Support User’s Manual 36 www.i2a2.upm.es

$/opt/epics/base-3.15.4/bin/linux-x86/makeBaseApp.pl –i –t example

cRIOIO

2. CompactRIO application (including IOC) using DMA data acquisition profile.

$/opt/epics/base-3.15.4/bin/linux-x86/makeBaseApp.pl –t example

cRIODMA

$/opt/epics/base-3.15.4/bin/linux-x86/makeBaseApp.pl –i –t example

cRIODMA

3. FlexRIO application (including IOC) using PXIe7966-NI5761 bundle and data acquisition

profile.

$/opt/epics/base-3.15.4/bin/linux-x86/makeBaseApp.pl –t example

fRIO5761

$/opt/epics/base-3.15.4/bin/linux-x86/makeBaseApp.pl –i –t example

fRIO5761

4. FlexRIO application (including IOC) using PXIe7965-NI6581 bundle and data acquisition

profile.

$/opt/epics/base-3.15.4/bin/linux-x86/makeBaseApp.pl –t example

fRIO6581

$/opt/epics/base-3.15.4/bin/linux-x86/makeBaseApp.pl –i –t example

fRIO6581

5. FlexRIO application (including IOC) using PXIe7966-NI1483 bundle and image data

acquisition profile.

$/opt/epics/base-3.15.4/bin/linux-x86/makeBaseApp.pl –t example

fRIO1483

$/opt/epics/base-3.15.4/bin/linux-x86/makeBaseApp.pl –i –t example

fRIO1483

5.2.2 Configure the unit, the application and the IOC

Next paragraphs explain how to configure each application and each IOC included in a software

unit. If your software unit contains more than one App repeat the process described below.

The necessary steps to configure the sample unit include:

1) Configuration of RELEASE file.

2) Configuration of Db.

3) The addition of the LabVIEW project with the FPGA implementation inside the sample

unit.

4) The configuration of the Makefiles to find necessary libraries, the bitfile and headerfile,

and to build record databases.

5) The configuration of the RIO device initialization function.

5.2.2.1 Configure RELEASE file

Navigate to epics_irio_sample/configure.

IRIO EPICS Device Support User’s Manual 37 www.i2a2.upm.es

Edit RELEASE file adding next lines at the end of the file:

EPICS_BASE=/opt/epics/base-3.15.4

SUPPORT = /opt/epics/support

ASYN = $(SUPPORT)/asyn4-30

IRIO_LIB = $(SUPPORT)/iriolib-v1.2.0/src/main/epics

IRIO_EPICS = $(SUPPORT)/irioepics-v1.2.0/src/main/epics

5.2.2.2 Configure DB

Navigate to epics_irio_sample/<application_name>App/Db

Edit Makefile as follows:

TOP=../..

include $(TOP)/configure/CONFIG

#--

ADD MACRO DEFINITIONS AFTER THIS LINE

#--

Optimization of db files using dbst (DEFAULT: NO)

#DB_OPT = YES

#--

Create and install (or just install)

databases, templates, substitutions like this

#--

If <anyname>.db template is not named <anyname>*.template add

<anyname>_TEMPLATE = <templatename>

include $(TOP)/configure/RULES

#--

ADD RULES AFTER THIS LINE

Db loaded in the example have been deleted. Our sample application will load the records

database through substitution files loaded in st.cmd file

5.2.2.3 Include LabVIEW code to the application

Create a new folder called LV<application_name> in the following path,

epics-irio-sample/src/main/epics/<application_name>App/

Copy the LV project folder of each application from the IRIO_LabVIEW_Test_Templates github

repository downloaded in section 5.1

This folder contains the LabVIEW for FPGA project developed for this specific application. The

content of the LV<application_name> folder must include a folder named “FPGA_Bitfiles”. It

contains the bitfile and the headerfile. The name of this folder is mandatory.

This is the only valid method to include LabVIEW project in a sample

application.

5.2.2.4 Include necessary libraries and LabVIEW resources in the App.

Edit the application Makefile located in:

irio_epics_sample/src/main/epics/<application_name>App/src

IRIO EPICS Device Support User’s Manual 38 www.i2a2.upm.es

Add the lines highlighted in bold to include the LabVIEW resources and necessary libraries in

the application.

TOP=../..

include $(TOP)/configure/CONFIG

#--

ADD MACRO DEFINITIONS AFTER THIS LINE

#=============================

Declare LabVIEW resources

IRIO_FPGA_DIR = LV<application_name>/FPGA_Bitfiles

IRIO_FPGA += NiFpga_<LV_project_name>.h NiFpga_<LV_project_name>.lvbitx

#=============================

#=============================

Build the IOC support library

PROD_IOC += <application_name>

<application_name>.dbd will be created and installed

DBD += <application_name>.dbd

<application_name>.dbd will be made up from base.dbd and module dbds listed

below:

<application_name>_DBD += base.dbd

<application_name>_registerRecordDeviceDriver.cpp derives from

<application_name>.dbd

<application_name>_SRCS += <application_name>_registerRecordDeviceDriver.cpp

Build the main IOC entry point on workstation OSs.

<application_name>_SRCS_DEFAULT += <application_name>Main.cpp

<application_name>_SRCS_vxWorks += -nil-

#=============================

Add support for the following uncommented modules:

ASYN

<application_name>_DBD += asyn.dbd

<application_name>_DBD += drvAsynSerialPort.dbd

<application_name>_DBD += drvAsynIPPort.dbd

<application_name>_LIBS += asyn

IRIO

<application_name>_DBD += irioAsyn.dbd

<application_name>_LIBS += irio-epics

-include ../*.snlprog

#=============================

Finally link to the EPICS Base libraries

<application_name>_LIBS += $(EPICS_BASE_IOC_LIBS)

#=============================

include $(TOP)/configure/RULES

#--

ADD RULES AFTER THIS LINE

IRIO EPICS Device Support User’s Manual 39 www.i2a2.upm.es

This is the only valid method to include headerfiles and bitfiles in the sample

application.

5.2.2.5 Add substitution files

Add necessary substitution files to the application. Every substitution file must contain as many

calls to the templates as resources are implemented in the FPGA.

Substitution files must be named as follows: XXXXXX.substitution.

Each instantiation of the template load once the template and all the PVs defined inside.

Example of substitution file for rio-module.template instantiated for a cRIO platform.

file “$(IRIO_EPICS)/db/rio-module.template” {

pattern

{

 BOARDTYPE,

 BOARDTYPEIDX,

 CBS1,

 CBS2,

 MODULEIDX

}

{

 “NI9159”,

 “0”,

 “TEST”,

 “FCT0”,

 “0”

}

}

The template has been instantiated once, so PVs loaded are: FPGASTART, EPICSVERSION,

DEVICETEMP, DAQSTARTSTOP, DEBUGMODE, DEVQUALITYSTATUS,

FPGAVIVERSION, DRIVERVERSION, DEVICENAME, SERIALNUMBER,

FPGASTATUS, STATUS-STR and STATUS

Example of substitution file for rio-sg.template for a PXIe-7966RNI5761 platform.

file “$(IRIO_EPICS)/db/rio-sg.template” {

pattern

{

 BOARDTYPE,

 BOARDTYPEIDX,

 CBS1,

 CBS2,

CHIDX,

 MODULEIDX,

 HOPR_SGUPDATERATE,

 LOPR_SGUPDATERATE,

 DRVH_SGUPDATERATE,

DRVL_SGUPDATERATE,

 HOPR_SGFREQ,

IRIO EPICS Device Support User’s Manual 40 www.i2a2.upm.es

 LOPR_SGFREQ,

 DRVH_SGFREQ,

DRVL_SGFREQ,

 HOPR_SGPHASE,

 LOPR_SGPHASE,

 DRVH_SGPHASE,

DRVL_SGPHASE,

 HOPR_SGAMP,

 LOPR_SGAMP,

 DRVH_SGAMP,

DRVL_SGAMP,

}

{

 “5761”

 “0”

 “TEST”

 “FCT0”

 “0”

 “0”

 “100000000”

 “0”

 “100000000”

 “0”

 “10000000”

 “0”

 “10000000”

 “0”

 “360”

 “0”

 “360”

 “0”

 “1”

 “-1”

 “1”

 “-1”

}

{

 “5761”

 “0”

 “TEST”

 “FCT0”

 “1”

 “0”

 “100000000”

 “0”

 “100000000”

 “0”

 “10000000”

 “0”

 “10000000”

 “0”

 “360”

 “0”

 “360”

 “0”

 “1”

 “-1”

 “1”

 “-1”

IRIO EPICS Device Support User’s Manual 41 www.i2a2.upm.es

}

}

The template has been instantiated twice, so PVs loaded are: SGUPDATERATE0,

SGUPDATERATE1, SGFREQ0, SGFREQ1, SGAMP0, SGAMP1, SGPHASE0, SGPHASE1,

SGSIGNALTYPE0 and SGSIGNALTYPE1.

The complete list of substitution files for each application, that matches with resources

implemented in LabVIEW projects downloaded in section 5.1, can be found at irio_epics_sample

github repository downloaded in section 5.2.2

Copy substitution files of each application in

irio_epics_sample/iocBoot/ioc<application_name> folder

5.2.2.6 Configure st.cmd file with RIO device initialization function and load

records.

Navigate to irio_epics_sample/iocBoot/ioc<application_name>

Edit with a text editor the st.cmd file adding following code.

#-==

< envPaths

epicsEnvSet("EPICS_CA_MAX_ARRAY_BYTES","170000")

cd "${TOP}"

Register all support components ##

dbLoadDatabase "dbd/cRIOPBP.dbd"

cRIOPBP_registerRecordDeviceDriver pdbbase

IRIO Device Initialization Function ##

nirioinit("RIO_<x>","<RIO SN>","RIO Model", "LabVIEWProject","Vx.x",1)

Loading substitution files ##

cd "$(TOP)/iocBoot/$(IOC)"

dbLoadTemplate("PCF0-rio-module.substitution")

dbLoadTemplate("PCF0-rio-ai.substitution")

dbLoadTemplate("PCF0-rio-ao.substitution")

dbLoadTemplate("PCF0-rio-di.substitution")

dbLoadTemplate("PCF0-rio-do.substitution")

dbLoadTemplate("PCF0-rio-auxai.substitution")

dbLoadTemplate("PCF0-rio-auxao.substitution")

dbLoadTemplate("PCF0-rio-auxdi.substitution")

dbLoadTemplate("PCF0-rio-auxdo.substitution")

dbLoadTemplate("PCF0-rio-pointbypoint.substitution")

IOC Logging ##

iocLogInit

IRIO EPICS Device Support User’s Manual 42 www.i2a2.upm.es

IOC initialization ##

cd "${TOP}/db"

iocInit

See section 4.1 for more details about parameters used.

Serial number of your RIO device is obtained executing lsrio.py command in

a terminal window in the fast controller.

5.2.2.7 Compile the unit

Compile the unit

$ make

5.2.2.8 Run the application

To run one application use the following command:

$ cd irio_epics_sample/iocBoot/ioc<application_name>

$../../bin/<arch>/<application_name> st.cmd

5.2.2.9 OPI Panels to manage RIO devices with CSS

Download and install any Control System Studio software distribution

Open OPI panels included in irio_epics_sample github repository to control de RIO device

selected, start/stop data acquisition, and visualize the data acquired.

IRIO EPICS Device Support User’s Manual 43 www.i2a2.upm.es

Appendix A RECORD TEMPLATES

This section provides details of the records used in the templates which are part of the IRIO

EPICS Device Support (version 1.2.0 or higher). In the substitution files, the following macros

are defined:

 CBS1: Control break down structure level 1 name

 CBS2: Control break down structure level 2 name

 BOARDTYPEIDX: Controller index

 MODULEIDX: Module index

o ASYNPORT name will be RIO_$(MODULEIDX), i.e. RIO_0 for module

instance 0.

 CHIDX : Channel number

 GRIDX: Group number

 NSAMPLES: Number of samples in waveforms.

 Other MACROS are defined in SignalGenerator template related with

HOPR,LOPR,DRVH and DRVL for SGAMP, SGFREQ, SGUPDATERATE AND

SGPHASE.

A.1. Records of common resources for all RIO devices

FPGASTART

record(bo,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-FPGASTART"){

 field(DESC,"FPGA Start.")

 field(DTYP,"asynInt32")

 field(OUT,"@asyn(RIO_$(MODULEIDX),0)FPGAStart")

 field(PINI,"NO")

 field(ZNAM,"OFF")

 field(ONAM,"ON")

}

FPGAVIVERSION

record(stringin,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-

FPGAVIVERSION"){

 field(DESC,"Bitfile version")

 field(DTYP,"asynOctetRead")

 field(INP,"@asyn(RIO_$(MODULEIDX),0)VIversion")

 field(PINI,"YES")

}

DEVICETEMP

record(ai,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-

DEVICETEMP"){

 field(DESC,"FPGA Temperature")

 field(DTYP,"asynFloat64")

 field(INP,"@asyn(RIO_$(MODULEIDX),0)DeviceTemp")

 field(SCAN,"1 second")

 field(PREC,"2")

 field(PINI,"YES")

 field(LINR,"NO CONVERSION")

 field(EGU,"C Degrees")

IRIO EPICS Device Support User’s Manual 44 www.i2a2.upm.es

}

DAQSTARTSTOP

record(bo,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-

DAQSTARTSTOP"){

 field(DESC,"Controls DAQ Start/Stop ")

 field(DTYP,"asynInt32")

 field(OUT,"@asyn(RIO_$(MODULEIDX),0)DAQStartStop")

 field(PINI,"NO")

 field(ZNAM,"OFF")

 field(ONAM,"ON")

}

DEBUGMODE

record(bo,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-DEBUGMODE"){

field(DESC,"Controls FPGA DebugMode")

 field(DTYP,"asynInt32")

 field(OUT,"@asyn(RIO_$(MODULEIDX),0)debug")

 field(PINI,"NO")

 field(ZNAM,"OFF")

 field(ONAM,"ON")

}

DEVQUALITYSTATUS

record(ai,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-

DEVQUALITYSTATUS"){

 field(DESC,"Info of errors in acquisition process")

 field(DTYP,"asynInt32")

 field(INP,"@asyn(RIO_$(MODULEIDX),0)DevQualityStatus")

 field(SCAN,"1 second")

 field(PINI,"YES")

}

EPICSVERSION

record(ai,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-

EPICSVERSION"){

 field(DESC,"Epics-irio driver version")

 field(DTYP,"asynOctetRead")

 field(INP,"@asyn(RIO_$(MODULEIDX),0)epics_version")

 field(PINI,"YES")

}

DRIVERVERSION

record(ai,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-

DRIVERVERSION"){

 field(DESC,"IRIO driver version")

 field(DTYP,"asynOctetRead")

 field(INP,"@asyn(RIO_$(MODULEIDX),0)driver_version")

 field(PINI,"YES")

IRIO EPICS Device Support User’s Manual 45 www.i2a2.upm.es

}

DEVICENAME

record(ai,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-

DEVICENAME"){

 field(DESC,"RIO device name")

 field(DTYP,"asynOctetRead")

 field(INP,"@asyn(RIO_$(MODULEIDX),0) device_name ")

 field(PINI,"YES")

}

SERIALNUMBER

record(ai,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-

SERIALNUMBER"){

 field(DESC,"RIO device serial number")

 field(DTYP,"asynOctetRead")

 field(INP,"@asyn(RIO_$(MODULEIDX),0) serial_number ")

 field(PINI,"YES")

}

STATUS

record(mbbi,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-STATUS"){

 field(DESC,"$(BOARDTYPE).$(BOARDTYPEIDX) Board Status")

 field(DTYP,"asynInt32")

 field(INP,"@asyn(RIO_$(MODULEIDX),0) riodevice_status ")

 field(SCAN,"i/o iNTR")

 field(ZRVL,"0")

 field(ZRST,"Ok")

 field(ZRSV,"NO_ALARM")

 field(ONVL,"1")

 field(ONST,"Initializing")

 field(ONSV,"MINOR")

 field(TWVL,"2")

 field(TWST,"Resetting")

 field(TWSV,"MINOR")

 field(THVL,"3")

 field(THST,"Hardware error")

 field(THSV,"MAJOR")

 field(FRVL,"4")

 field(FRST,"No Board")

 field(FRSV,"MAJOR")

 field(FVVL,"5")

 field(FVST,"StatConf error")

 field(FVSV,"MAJOR")

 field(SXVL,"6")

 field(SXST,"DynConf error")

 field(SXSV,"MAJOR")

 field(SVVL,"7")

 field(SVST,"Configured")

 field(SVSV,"NO_ALARM")

 field(EIVL,"8")

 field(EIST,"HW_config_error")

 field(EISV,"MAJOR")

 field(PINI, "YES")

IRIO EPICS Device Support User’s Manual 46 www.i2a2.upm.es

 field(VAL, "4")

}

FPGASTATUS

record(ai,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-

FPGASTATUS"){

 field(DESC,"RIO device FPGA status")

 field(DTYP,"asynOctetRead")

 field(INP,"@asyn(RIO_$(MODULEIDX),0) FPGAStatus ")

 field(PINI,"YES")

}

STATUS-STR

record(ai,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-STATUS-

STR"){

 field(DESC,"RIO device FPGA status INFO")

 field(DTYP,"asynOctetRead")

 field(INP,"@asyn(RIO_$(MODULEIDX),0) InfoStatus ")

 field(SCAN,"I/O Intr")

 field(PINI,"YES")

}

SR_AI_INTR

record(ao,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-

SR_AI_INTR"){

 field(DESC,"Sampling rate of AI_INTR thread")

 field(DTYP,"asynInt32")

 field(OUT,"@asyn(RIO_$(MODULEIDX),0)SR_AI_Intr")

 field(PINI,"NO")

 field(EGU,"S/s")

 field(HOPR,"1000")

 field(LOPR,"1")

 field(DRVH,"1000")

 field(DRVL,"1")

 field(PREC,"6")

}

SR_DI_INTR

record(ao,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-

SR_DI_INTR"){

 field(DESC,"Sampling rate of DI_INTR thread")

 field(DTYP,"asynInt32")

 field(OUT,"@asyn(RIO_$(MODULEIDX),0)SR_DI_Intr")

 field(PINI,"NO")

 field(EGU,"S/s")

 field(HOPR,"1000")

 field(LOPR,"1")

 field(DRVH,"1000")

 field(DRVL,"1")

 field(PREC,"6")

}

IRIO EPICS Device Support User’s Manual 47 www.i2a2.upm.es

A.2. Records used by Point by Point profile

SR_PBP

record(ao,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-

SR_PBP$(GRIDX)"){

 field(DESC,"Sampling rate $(GRIDX) of point by point profile")

 field(DTYP,"asynInt32")

 field(OUT,"@asyn(RIO_$(MODULEIDX),$(GRIDX)) SamplingRate")

 field(PINI,"NO")

 field(EGU,"S/s")

 field(HOPR,"10000000")

 field(LOPR,"0")

 field(DRVH,"10000000")

 field(DRVL,"0")

 field(PREC,"6")

}

A.3. Records used by Data Acquisition profile

GROUPENABLE

record(bo,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-

GROUPENABLE$(GRIDX)"){

 field(DESC,"Controls ChannelGroup$(GRIDX) enable/disable")

 field(DTYP,"asynInt32")

 field(OUT,"@asyn(RIO_$(MODULEIDX),$(GRIDX))GroupEnable")

 field(ZNAM,"DISABLE")

 field(ONAM,"ENABLE")

 field(PINI,"NO")

}

SR

record(ao,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-SR$(GRIDX)"){

 field(DESC,"Sampling rate of channel group $(GRIDX)")

 field(DTYP,"asynInt32")

 field(OUT,"@asyn(RIO_$(MODULEIDX),$(GRIDX))SamplingRate")

 field(PINI,"NO")

 field(EGU,"S/s")

 field(HOPR,"125000000")

 field(LOPR,"0")

 field(DRVH,"125000000")

 field(DRVL,"0")

 field(PREC,"6")

}

DMAsOVERFLOW

record(bi,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-

DMAsOVERFLOW$(GRIDX)"){

 field(DESC,"Correct(0) or Overflow(1)")

 field(DTYP,"asynInt32")

 field(INP,"@asyn(RIO_$(MODULEIDX),$(GRIDX))DMAsOverflow")

 field(ZNAM,"CORRECT")

 field(ONAM,"OVERFLOW")

IRIO EPICS Device Support User’s Manual 48 www.i2a2.upm.es

 field(PINI,"YES")

 field(SCAN,".1 second")

}

DF

record(ao,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)G-$(BOARDTYPEIDX)-DF$(GRIDX)"){

 field(DESC,"Block Decimation factor of DMA$(GRIDX)")

 field(DTYP,"asynInt32")

 field(OUT,"@asyn(RIO_$(MODULEIDX),$(GRIDX))DF")

 field(PINI,"NO")

 field(HOPR,"100000000")

 field(LOPR,"1")

 field(DRVH,"100000000")

 field(DRVL,"1")

 field(PREC,"0")

}

CH

record(waveform,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-CH$(CHIDX)"){

 field(DESC,"Input waveform $(CHIDX)")

 field(DTYP,"asynFloat32ArrayIn")

 field(INP,"@asyn(RIO_$(MODULEIDX),$(CHIDX))CH")

 field(FTVL,"FLOAT")

 field(PINI,"YES")

 field(NELM,"$(NSAMPLE)")

 field(PREC,"6")

 field(SCAN,"I/O Intr")

}

A.4. Records used by Image Data Acquisition Profile.

GROUPENABLE

record(bo,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-

GROUPENABLE$(GRIDX)"){

 field(DESC,"Controls ChannelGroup$(GRIDX) enable/disable")

 field(DTYP,"asynInt32")

 field(OUT,"@asyn(RIO_$(MODULEIDX),$(GRIDX))GroupEnable")

 field(ZNAM,"DISABLE")

 field(ONAM,"ENABLE")

 field(PINI,"NO")

}

DMAsOVERFLOW

record(bi,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-

DMAsOVERFLOW$(GRIDX)"){

 field(DESC,"Correct(0) or Overflow(1)")

 field(DTYP,"asynInt32")

 field(INP,"@asyn(RIO_$(MODULEIDX),$(GRIDX))DMAsOverflow")

 field(ZNAM,"CORRECT")

 field(ONAM,"OVERFLOW")

 field(PINI,"YES")

field(SCAN,".1 second")

}

IRIO EPICS Device Support User’s Manual 49 www.i2a2.upm.es

DF

record(ao,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-DF$(GRIDX)"){

 field(DESC,"Block Decimation factor of DMA$(GRIDX)")

 field(DTYP,"asynInt32")

 field(OUT,"@asyn(RIO_$(MODULEIDX),$(GRIDX))DF")

 field(PINI,"NO")

 field(HOPR,"100000000")

 field(LOPR,"1")

 field(DRVH,"100000000")

 field(DRVL,"1")

 field(PREC,"0")

}

SIGNALMAPPING

record(mbbo,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-

SIGNALMAPPING$(GRIDX)"){

 field(DESC,"Select the signal mapping $(GRIDX)")

 field(DTYP,"asynInt32")

 field(OUT,"@asyn(RIO_$(MODULEIDX),$(GRIDX))CLSignalMapping")

 field(PINI,"NO")

 field(ZRVL,"0")

 field(ONVL,"1")

 field(TWVL,"2")

 field(ZRST,"STANDARD")

 field(ONST,"BASLER10TAP")

 field(TWST,"VOSKHULER10TAP")

}

CONFIGURATION

record(mbbo,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-

CONFIGURATION$(GRIDX)"){

 field(DESC,"0-Base,1-Medium,2-Full")

 field(DTYP,"asynInt32")

 field(OUT,"@asyn(RIO_$(MODULEIDX),$(GRIDX))CLConfiguration")

 field(PINI,"NO")

 field(ZRVL,"0")

 field(ONVL,"1")

 field(TWVL,"2")

 field(ZRST,"BASE")

 field(ONST,"MEDIUM")

 field(TWST,"FULL")

}

LINESCAN

record(bo,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-LINESCAN$(GRIDX)"){

 field(DESC,"Set CL Line Scan $(GRIDX)")

 field(DTYP,"asynInt32")

 field(OUT,"@asyn(RIO_$(MODULEIDX),$(GRIDX))CLLineScan")

 field(PINI,"NO")

 field(ZNAM,"DISABLE")

 field(ONAM,"ENABLE")

}

FVALHIGH

record(bo,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-FVALHIGH$(GRIDX)"){

 field(DESC,"Set CL FVAL Active High $(GRIDX)")

IRIO EPICS Device Support User’s Manual 50 www.i2a2.upm.es

 field(DTYP,"asynInt32")

 field(OUT,"@asyn(RIO_$(MODULEIDX),$(GRIDX))CLFVALHigh")

 field(PINI,"NO")

 field(ZNAM,"DISABLE")

 field(ONAM,"ENABLE")

}

LVALHIGH

record(bo,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-LVALHIGH$(GRIDX)"){

 field(DESC,"Set CL LVAL Active High $(GRIDX)")

 field(DTYP,"asynInt32")

 field(OUT,"@asyn(RIO_$(MODULEIDX),$(GRIDX))CLLVALHigh")

 field(PINI,"NO")

 field(ZNAM,"DISABLE")

 field(ONAM,"ENABLE")

}

DVALHIGH

record(bo,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-DVALHIGH$(GRIDX)"){

 field(DESC,"Set CL DVAL Active High $(GRIDX)")

 field(DTYP,"asynInt32")

 field(OUT,"@asyn(RIO_$(MODULEIDX),$(GRIDX))CLDVALHigh")

 field(PINI,"NO")

 field(ZNAM,"DISABLE")

 field(ONAM,"ENABLE")

}

SPAREHIGH

record(bo,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-SPAREHIGH$(GRIDX)"){

 field(DESC,"Set CL Spare Active High $(GRIDX)")

 field(DTYP,"asynInt32")

 field(OUT,"@asyn(RIO_$(MODULEIDX),$(GRIDX))CLSpareHigh")

 field(PINI,"NO")

 field(ZNAM,"DISABLE")

 field(ONAM,"ENABLE")

}

UARTRECEIVE

record(stringin,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-

UARTRECEIVE$(GRIDX)"){

 field(DESC,"Uart Recieve $(GRIDX)")

field(DTYP,"asynOctetRead")

 field(INP,"@asyn(RIO_$(MODULEIDX),$(GRIDX))UARTReceive")

 field(SCAN,"I/O Intr")

 field(PINI,"YES")

}

UARTTRANSMIT

record(stringout,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-

UARTTRANSMIT$(GRIDX)"){

 field(DESC,"Uart Transmit $(GRIDX)")

 field(DTYP,"asynOctetWrite")

 field(OUT,"@asyn(RIO_$(MODULEIDX),$(GRIDX))UARTTransmit")

 field(PINI,"NO")

IRIO EPICS Device Support User’s Manual 51 www.i2a2.upm.es

}

UARTBREAK

record(bi,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-UARTBREAK$(GRIDX)"){

 field(DESC,"Uart break indicator $(GRIDX)")

 field(DTYP,"asynInt32")

 field(INP,"@asyn(RIO_$(MODULEIDX),$(GRIDX))UARTBreakIndicator")

 field(ZNAM,"UARTCORRECT")

 field(ONAM,"UARTBREAK")

 field(SCAN,".1 second")

 field(PINI,"YES")

}

UARTFRAMEeRR

record(bi,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-

UARTFRAMEeRR$(GRIDX)"){

 field(DESC,"Frame Error $(GRIDX)")

 field(DTYP,"asynInt32")

 field(INP,"@asyn(RIO_$(MODULEIDX),$(GRIDX))UARTFrammingError")

 field(ZNAM,"UARTCORRECT")

 field(ONAM,"UARTFRAMEERROR")

 field(SCAN,".1 second")

 field(PINI,"YES")

}

UARTOVERRUN

record(bi,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-

UARTOVERRUN$(GRIDX)"){

 field(DESC,"UartCorrect(0) or UartOverrun(1)")

 field(DTYP,"asynInt32")

 field(INP,"@asyn(RIO_$(MODULEIDX),$(GRIDX))UARTOverrunError")

 field(ZNAM,"UARTCORRECT")

 field(ONAM,"UARTOVERRUN")

 field(PINI,"YES")

 field(SCAN,".1 second")

}

SIZEX

record(longout, "$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-

SIZEX$(GRIDX)") {

 field(DESC, "Image size in X dimension current value.")

 field(DTYP, "asynInt32")

 field(EGU, "pix")

 field(OUT, "@asyn(RIO_$(MODULEIDX),$(GRIDX))CLSizeX")

 field(FLNK, "$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-

IMAGESIZE$(GRIDX)")

 field(HOPR,"1690")

 field(LOPR,"1")

 field(DRVH,"1690")

 field(DRVL,"1")

}

IRIO EPICS Device Support User’s Manual 52 www.i2a2.upm.es

SIZEY

record(longout, "$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-

SIZEY$(GRIDX)") {

 field(DESC, "Image size in y dimension current value.")

 field(DTYP, "asynInt32")

 field(EGU, "pix")

 field(OUT, "@asyn(RIO_$(MODULEIDX),$(GRIDX))CLSizeY")

 field(FLNK, "$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-

IMAGESIZE$(GRIDX)")

 field(HOPR,"1710")

 field(LOPR,"1")

 field(DRVH,"1710")

 field(DRVL,"1")

}

CH

record(waveform,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-CH$(CHIDX)"){

 field(DESC,"Input waveform $(CHIDX)")

 field(DTYP,"asynInt8ArrayIn")

 field(INP,"@asyn(RIO_$(MODULEIDX),$(CHIDX))CH")

 field(FTVL,"UCHAR")

 field(PINI,"NO")

 field(NELM,"$(NSAMPLE)")

 field(SCAN,"I/O Intr")

 field(FLNK, "$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-

IMAGE$(CHIDX)")

}

IMAGE

record(subArray, "$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-

IMAGE$(CHIDX)") {

 field(DESC, "Read image.")

 field(INP, "$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-CH$(CHIDX)")

 field(FTVL, "UCHAR")

 field(MALM, "$(NSAMPLE)")

 field(NELM, "$(NSAMPLE)")

 field(PINI, "NO")

 field(HOPR, "$(NSAMPLE)")

 field(LOPR, "0")

}

IMAGESIZE

record(calcout, "$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-

IMAGESIZE$(CHIDX)") {

 field(DESC, "Image size")

 field(EGU, "byte")

 field(INPA, "$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-

SIZEX$(CHIDX)")

 field(INPB, "$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-

SIZEY$(CHIDX)")

 field(CALC, "A*B")

 field(OUT, "$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-

IMAGE$(CHIDX).NELEM")

 field(HOPR, "$(NSAMPLE)")

 field(LOPR, "0")

}

IRIO EPICS Device Support User’s Manual 53 www.i2a2.upm.es

A.5. Records for optional resources

AI

record (ai, "$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-

AI$(CHIDX)"){

 field(DESC,"Analog Input channel $(CHIDX) value")

 field(DTYP,"asynFloat64")

 field(INP,"@asyn(RIO_$(MODULEIDX),$(CHIDX))AI")

 field(SCAN,".1 second")

 field(PREC,"6")

 field(PINI,"YES")

 field(TSE,"-2")

}

auxAI

record (ai, "$(CBS1)-$(CBS2)-HWCF-R$(RACK)C$(CHASSIS)B$(BOARD):auxAI$(CHIDX)"){

 field(DESC,"Aux Analog Input of channel $(CHIDX)")

 field(DTYP,"asynInt32")

 field(INP,"@asyn(RIO_$(MODULEIDX),$(CHIDX))auxAI")

 field(SCAN,".1 second")

 field(PREC,"0")

 field(PINI,"YES")

}

AO

record (ao, "$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-AO$(CHIDX)"){

 field(DESC,"Analog Output channel $(CHIDX) value")

 field(DTYP,"asynFloat64")

 field(OUT,"@asyn(RIO_$(MODULEIDX),$(CHIDX))AO")

 field(HOPR,"$(HOPR)")

 field(LOPR,"$(LOPR)")

 field(DRVH,"$(DRVH)")

 field(DRVL,"$(DRVL)")

 field(PREC,"6")

 field(PINI,"NO")

}

AOENABLE

record(bo,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-AOENABLE$(CHIDX)"){

 field(DESC,"Analog Output channel $(CHIDX) enable")

 field(DTYP,"asynInt32")

 field(OUT,"@asyn(RIO_$(MODULEIDX),$(CHIDX))AOEnable")

 field(PINI,"NO")

 field(ZNAM,"DISABLE")

 field(ONAM,"ENABLE")

}

auxAO

record (ao, "$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-auxAO$(CHIDX)"){

 field(DESC,"Analog Output aux channel $(CHIDX) value")

 field(DTYP,"asynInt32")

 field(OUT,"@asyn(RIO_$(MODULEIDX),$(CHIDX))auxAO")

 field(PREC,"0")

 field(HOPR,"$(HOPR)")

IRIO EPICS Device Support User’s Manual 54 www.i2a2.upm.es

 field(LOPR,"$(LOPR)")

 field(DRVH,"$(DRVH)")

 field(DRVL,"$(DRVL)")

 field(PINI,"NO")

}

DI

record (bi, "$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-DI$(CHIDX)"){

 field(DESC,"Digital Input channel $(CHIDX) value")

field(DTYP,"asynInt32")

field(INP,"@asyn(RIO_$(MODULEIDX),$(CHIDX))DI")

 field(SCAN,".1 second")

 field(ZNAM,"FALSE")

 field(ONAM,"TRUE")

 field(PINI,"YES")

 field(TSE,"-2")

}

auxDI

record (bi, "$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-auxDI$(CHIDX)"){

 field(DESC,"Digital Input aux channel $(CHIDX) value")

 field(DTYP,"asynInt32")

 field(INP,"@asyn(RIO_$(MODULEIDX),$(CHIDX))auxDI")

 field(SCAN,".1 second")

 field(ZNAM,"FALSE")

 field(ONAM,"TRUE")

 field(PINI,"YES")

}

DO

record (bo, "$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-DO$(CHIDX)"){

 field(DESC,"Digital Output channel $(CHIDX)")

 field(DTYP,"asynInt32")

 field(OUT,"@asyn(RIO_$(MODULEIDX),$(CHIDX))DO")

 field(ZNAM,"FALSE")

 field(ONAM,"TRUE")

 field(PINI,"NO")

}

auxDO

record (bo, "$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-auxDO$(CHIDX)"){

 field(DESC,"Digital Output aux channel $(CHIDX) value")

 field(DTYP,"asynInt32")

 field(OUT,"@asyn(RIO_$(MODULEIDX),$(CHIDX))auxDO")

 field(ZNAM,"FALSE")

 field(ONAM,"TRUE")

 field(PINI,"NO")

}

IRIO EPICS Device Support User’s Manual 55 www.i2a2.upm.es

A.6. Waveform generator

SGUPDATERATE

record(ao,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-

SGUPDATERATE$(CHIDX)"){

 field(DESC,"Signal Generator Update Rate $(CHIDX)")

 field(DTYP,"asynInt32")

 field(OUT,"@asyn(RIO_$(MODULEIDX),$(CHIDX))SGUpdateRate")

 field(PREC,"6")

 field(PINI,"NO")

 field(HOPR,"$(HOPR_ SGUPDATERATE)")

 field(LOPR,"$(LOPR_ SGUPDATERATE)")

 field(DRVH,"$(DRVH_ SGUPDATERATE)")

 field(DRVL,"$(DRVL_ SGUPDATERATE)")

 field(EGU,"S/s")

}

SGFREQ

record(ao,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-SGFREQ$(CHIDX)"){

 field(DESC,"Signal Generator freq $(CHIDX)")

 field(DTYP,"asynInt32")

 field(OUT,"@asyn(RIO_$(MODULEIDX),$(CHIDX))SGFreq")

 field(PREC,"6")

 field(PINI,"NO")

 field(HOPR,"$(HOPR_ SGFREQ)")

 field(LOPR,"$(LOPR_ SGFREQ)")

 field(DRVH,"$(DRVH_ SGFREQ)")

 field(DRVL,"$(DRVL_ SGFREQ)")

 field(EGU,"Hz")

}

SGPHASE

record(ao,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-SGPHASE$(CHIDX)"){

 field(DESC,"Signal Generator phase control $(CHIDX)")

 field(DTYP,"asynInt32")

 field(OUT,"@asyn(RIO_$(MODULEIDX),$(CHIDX))SGPhase")

 field(PINI,"NO")

 field(PREC,"0")

 field(HOPR,"$(HOPR_ SGPHASE)")

 field(LOPR,"$(LOPR_ SGPHASE)")

 field(DRVH,"$(DRVH_ SGPHASE)")

 field(DRVL,"$(DRVL_ SGPHASE)")

}

SGAMP

record(ao,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-SGAMP$(CHIDX)"){

 field(DESC,"DSS accumulator increment $(CHIDX)")

 field(DTYP,"asynFloat64")

 field(OUT,"@asyn(RIO_$(MODULEIDX),$(CHIDX))SGAmp")

 field(PINI,"NO")

 field(PREC,"6")

 field(HOPR,"$(HOPR_ SGAMP)")

 field(LOPR,"$(LOPR_ SGAMP)")

 field(DRVH,"$(DRVH_ SGAMP)")

 field(DRVL,"$(DRVL_ SGAMP)")

 field(EGU,"Volts")

}

IRIO EPICS Device Support User’s Manual 56 www.i2a2.upm.es

SIGNALTYPE

record(mbbo,"$(CBS1)-$(CBS2)-HWCF:$(BOARDTYPE)-$(BOARDTYPEIDX)-

SGSIGNALTYPE$(CHIDX)"){

 field(DESC,"Type of signal generated $(CHIDX))")

 field(DTYP,"asynInt32")

 field(OUT,"@asyn(RIO_$(MODULEIDX),$(CHIDX))SGSignalType")

 field(PINI,"NO")

 field(ZRVL,"0")

 field(ONVL,"1")

 field(TWVL,"2")

 field(THVL,"3")

 field(ZRST,"DC")

 field(ONST,"SINE")

 field(TWST,"SQUARE")

 field(THST,"TRIANGLE")

}

