

IRIO DESIGN RULES

RULES TO DESIGN ADVANCED DATA ACQUISITION
SYSTEMS USING LABVIEW FOR FPGA AND RIO DEVICES

INSTRUMENTATION AND APPLIED ACOUSTICS - RESEARCH GROUP

IRIO Design Rules Document 2 www.i2a2.upm.es

Worldwide Technical Support and Product Information

Web: www.i2a2.upm.es

Support: irio@i2a2.upm.es

I2A2 Research Group – Technical University of Madrid

UPM Campus Sur,

Carretera de Valencia, km 7, 28031 Madrid

Phone: +34 91 3364696

Fax: +34 91 3364696

http://www.i2a2.upm.es/
mailto:irio@i2a2.upm.es

IRIO Design Rules Document 3 www.i2a2.upm.es

Table of contents

1 SCOPE ...7

1.1 Identification..7

1.2 Document Overview ..7

1.3 Acronyms ...7

2 REFERENCED DOCUMENTS ..9

2.1 References ..9

3 METHODOLOGY..10

3.1 Introduction ...10

4 CREATING A LABVIEW PROJECT FOR A RIO DEVICE12

4.1 Creating a new LabVIEW project ..12

5 DESIGN RULES FOR FLEXRIO ..15

5.1 Platform identification ..15

5.2 Mandatory resources for a FlexRIO design. ..15

5.3 Analog Signal Data acquisition profile..19

5.3.1 Mandatory resources for data acquisition profile. ..19

5.3.2 Data format in the DMA for Data acquisition profile. ..22

5.3.2.1 PXIe 7966R / 5761R ...23

5.3.2.2 PXIe 7961R / 6581R ...23

5.3.2.3 PXIe 7961R or PXIe7966R without adapter module23

5.3.2.4 Format A: DAQ samples...23

5.3.2.5 Format B (TBD) ..25

5.3.3 Optional resources...25

5.3.3.1 Analog inputs ..25

5.3.3.2 Auxiliary analog inputs ...26

5.3.3.3 Analog Output ...27

5.3.3.4 Auxiliary analog output ..27

5.3.3.5 Digital input/output ...27

5.3.3.6 Signal generator ..32

5.3.4 LabVIEW for FPGA VI implementation for data acquisition profile33

5.3.4.1 Rules to be applied when designing for LabVIEW/FPGA for FlexRIO data

acquisition profile ...36

5.3.5 Summary of resources used for Data acquisition profile ..42

5.4 Image acquisition profile ..45

5.4.1 Mandatory resources for Image acquisition profile ..45

5.4.2 Data format in the DMA for Image Acquisition profile ...50

5.4.2.1 PXIe 7966R / NI1483 ...50

5.4.3 Summary of resources used for image acquisition profile51

IRIO Design Rules Document 4 www.i2a2.upm.es

5.5 Analog Signal Data acquisition profile (data to GPU)...55

5.5.1 Mandatory resources for data acquisition profile (data to GPU).56

5.6 Image acquisition profile (data to GPU) ...60

5.6.1 Mandatory resources for Image acquisition profile ..60

6 DESIGN RULES FOR CRIO ..62

6.1 Platform identification ..62

6.2 Mandatory resources for a cRIO design ...62

6.3 Analog Signal Data acquisition profile (DMA-based) ...66

6.3.1 Mandatory resources for data acquisition profile ...66

6.3.2 Data format in the DMA for Data acquisition profile. ..68

6.3.2.1 NI9159/NI9205 ...68

6.3.2.2 Format A: DAQ samples...68

6.3.2.3 Format B: (TBD) ...70

6.3.3 Optional resources...70

6.3.3.1 Analog inputs ..71

6.3.3.2 Auxiliary analog inputs ...71

6.3.3.3 Analog Output ...72

6.3.3.4 Auxiliary analog output ..72

6.3.3.5 Digital input/output ...72

6.3.3.6 Signal generator ..72

6.3.4 Summary of resources for cRIO DAQ profile ..73

6.4 Point by Point acquisition profile ..77

6.4.1 Mandatory resources for point by point I/O profile ..77

6.4.2 Optional resources...77

6.4.2.1 Analog inputs ..77

6.4.2.2 Auxiliary analog inputs ...77

6.4.2.3 Analog Output ...78

6.4.2.4 Auxiliary analog output ..78

6.4.2.5 Digital input/output ...78

6.4.2.6 Signal Generator ...78

6.4.3 Summary of resources for cRIO Point by Point profile ..78

6.5 cRIO Examples ..81

6.5.1 cRIO Basic requirements for the examples provided ...81

6.5.2 Module Identification in the Chassis ..81

6.5.3 Module Description and Signal Interconnections ...82

6.5.3.1 NI9205 Analog Input Module ...82

6.5.3.2 NI9264 Analog Output Connection ..83

6.5.3.3 NI9401 Digital Input/Output ...85

6.5.3.4 NI9477 Digital sinking output module ...87

6.5.3.5 NI9426 Sourcing Digital Input Module ..88

IRIO Design Rules Document 5 www.i2a2.upm.es

6.5.3.6 NI9425 Sinking Digital Input Module ..89

6.5.3.7 NI9476 Sourcing Digital Output Module ...90

6.5.4 System General Description..91

6.5.4.1 General Block Diagram ..91

6.5.4.2 State Machine ..91

6.5.4.3 Operation State: I/O Acquisition Loop ...92

6.5.4.4 System Management: Host HMI...92

6.5.5 Point by Point DAQ Profile Example ...93

6.5.5.1 Objective ...93

6.5.5.2 cRIO Hardware Elements Used ..93

6.5.5.3 Signal Connection ...94

6.5.5.4 Mandatory Resources for Point by Point I/O Profile94

6.5.5.5 Optional Resources ...94

6.5.5.6 LabVIEW Implementation for a cRIO Point by Point DAQ95

6.5.5.7 Host HMI Program..97

6.5.6 Analog Signal DAQ Profile (DMA based) Example ..99

6.5.6.1 Objective ...99

6.5.6.2 cRIO Hardware Elements Used ..99

6.5.6.3 Signal Connection ...100

6.5.6.4 Mandatory Resources for Analog Signal DAQ Profile100

6.5.6.5 Optional Resources ...100

6.5.6.6 LabVIEW Implementation for a cRIO Analog Signal DAQ Profile101

6.5.6.7 Host HMI Program..103

7 LABVIEW FOR FPGA TEMPLATES ..107

7.1.1 Location of the templates in GitHub repository ..107

7.1.2 LabVIEW template directory structure ...107

7.2 FlexRIO templates ..107

7.3 cRIO templates ..108

8 USING THE LABVIEW TEMPLATES...110

8.1 Overview ..110

8.2 Templates ...110

8.2.1 LabVIEW template browser description ...110

8.2.2 Folder Libs ..111

8.2.3 Target Clocks ..111

8.2.4 DMAs to Host ...111

8.2.5 NI Adapter module..112

8.2.6 Build specifications ...112

8.2.7 LabVIEW template VI ..112

8.2.7.1 Control panel ...112

8.2.7.2 Block diagram ...114

IRIO Design Rules Document 6 www.i2a2.upm.es

9 NI FPGA INTERFACE C API GENERATOR ...119

9.1 Executing the application ...119

9.2 Header file generated. ...120

IRIO Design Rules Document 7 www.i2a2.upm.es

1 SCOPE

T

1.1 Identification

This document contains the description of the different design rules that must be followed by

LabVIEW for FPGA designers when developing applications for the RIO devices. All the designs

for FlexRIO and cRIO, meeting the design rules explained in this document, can be used by the

software layers IRIO Library,NI-RIO EPICS Device Driver and IRIO-NDS. These design rules

allow:

 The development of FPGA-based data acquisition applications for analog and digital

signals using FlexRIO and cRIO platforms

 The development of FPGA-based image data acquisition applications using cameralink

cameras using FlexRIO platform.

 The integration of the monitoring part in a FPGA-based control application using cRIO

1.2 Document Overview

This document summarises the design rules to be followed by the LabVIEW for FPGA designers.

The document contains a basic description of the methodology to be used, and the design rules for

cRIO and FlexRIO platforms. Additionally, examples and templates are explained.

1.3 Acronyms

CPU Central Processing Unit

DAQ Data AcQuisition

FlexRIO Flexible Reconfigurable Input/Output

FPGA Field Programmable Gate Array

FPSC Fast Plant System Controller

I&C Instrumentation and Control

I/O Input and Output

NI National Instrument

PCDH Plant Control Design Handbook

PCI Peripheral Component Interconnect – computer bus standard

PCI Express Peripheral Component Interconnect Express

IRIO Design Rules Document 8 www.i2a2.upm.es

PICMG PCI Industrial Computer Manufacturers Group

PXI PCI Extensions for Instrumentation

PXI Express An evolution of PXI using PCI Express technologies

OS Operating system

RIO Reconfigurable input/output

IRIO Design Rules Document 9 www.i2a2.upm.es

2 REFERENCED DOCUMENTS

2.1 References

[RD1] NI FlexRIO FPGA Module Specifications (http://www.ni.com/pdf/manuals/372525d.pdf).

[RD2] NI FlexRIO Help. Edition Date: June 2010. Part Number: 372614D-01.

http://www.ni.com/pdf/manuals/372614d.zip

[RD3] NI LabVIEW for CompactRIO. http://www.ni.com/pdf/products/us/fullcriodevguide.pdf

[RD4] Developer’s Guide LabVIEW TM FPGA Course Manual. Course Software Version 2009.

August 2009 Edition. Part Number 372510C-01.

[RD5] The NI LabVIEW High-Performance FPGA Developer's Guide.

http://www.ni.com/tutorial/14600/en/

[RD6] http://zone.ni.com/reference/en-XX/help/370984T-01/criodevicehelp/module_ids/

[RD7] DDS Waveform Generation Reference Design for LabVIEW FPGA

http://www.ni.com/example/31066/en/

http://www.ni.com/pdf/manuals/372525d.pdf
http://www.ni.com/pdf/manuals/372614d.zip
http://www.ni.com/pdf/products/us/fullcriodevguide.pdf
http://www.ni.com/tutorial/14600/en/
http://zone.ni.com/reference/en-XX/help/370984T-01/criodevicehelp/module_ids/
http://www.ni.com/example/31066/en/

IRIO Design Rules Document 10 www.i2a2.upm.es

3 METHODOLOGY

3.1 Introduction

This section explains the different steps that a developer must follow to build data acquisition

applications using National Instruments RIO devices: FlexRIO and cRIO. These RIO devices have

an FPGA chip that controls the DAQ process and interchange data with a host using a

communication bus (PCIe). To program the FPGA on RIO devices, you need to follow these steps

(see Fig. 1):

1. Select the NI FlexRIO device [RD2] with the adapter module, or a cRIO system [RD3].

2. Create a LabVIEW project [RD1]. Section 4 provides more details about this and LabVIEW

project templates are available to be downloaded from GitHub repository to simplify the

development.

3. Write a VI using the specific rules described in this document and the recommendations

described in [RD4].Sections 5 and 6 describe the rules to be used when creating a VI from

FlexRIO and cRIO respectively.

4. Compile the VI and obtain the bitfile using LabVIEW for FPGA tools. This tool calls

directly to the XILINX compiler simplifying the process to obtain the bitfile. Once you

complete successfully this step you can test and debug your LabVIEW for FPGA

application in the windows computer.

5. Before starting the test in a Linux machine, generate the header file of the design using the

“FPGA Interface C API Generator” software application. Section 8 provides more details

about this step.

6. Move (copy) the header file and bit file obtained to the Linux machine and start testing your

applications in the Redhat environment.

IRIO Design Rules Document 11 www.i2a2.upm.es

LabVIEW for FPGA
Programmer

LabVIEW for FPGA
Programmer

Design Rules for
 RIO Devices

Design Rules for
 RIO Devices

RequirementsRequirements

++ = projectname.lvbitxprojectname.lvbitx

projectname.hprojectname.h

1

2

3

4

bitfilebitfile

=

5

projectname.lvbitxprojectname.lvbitx

projectname.hprojectname.h

6

Fig. 1: Design flow for RIO devices

IRIO Design Rules Document 12 www.i2a2.upm.es

4 CREATING A LABVIEW PROJECT FOR A RIO DEVICE

The first step using a RIO device is to develop a project in LabVIEW for FPGA. This software only

runs in Windows OS. This software will provide all the tools to configure/program the FPGAs. The

FPGA is configured using a “bitfile” generated by the software environment. To start the LabVIEW

development environment, execute the LabVIEW program using the Windows panel Fig. 2.

Fig. 2 LabVIEW (32-bit) programs access.

4.1 Creating a new LabVIEW project

Once LabVIEW is started, the first step is to create a new LabVIEW project containing the target

(the FPGA card). Select “File->New” and a window will be displayed. Select Project->Project from

Wizard->LabVIEW FPGA Project (see Fig. 3).

IRIO Design Rules Document 13 www.i2a2.upm.es

Fig. 3: Selecting the wizard for LabVIEW for FPGA.

Now, you need to select the target. You can choose MXIe-RIO chassis on My Computer for

NI9159-based systems or FlexRIO on My Computer for FlexRIO bundles (see Fig. 4).

Fig. 4: Selecting the RIO platform

In the case of compactRIO system you can choose the chassis model (NI9159 in this case) and later

the cRIO modules allocated in them. This last step should be completed depending on your final

configuration (select the modules needed). In the case of FlexRIO select the FlexRIO device

(7961R or 7966R). Once you complete this step you will find a LabVIEW project already prepared

for your development (Fig. 5).

IRIO Design Rules Document 14 www.i2a2.upm.es

Fig. 5 LabVIEW project with a FPGA target

Fig. 5 shows a project example with a compactRIO system NI 9159. This cRIO [RD3] system is

connected in the development computer using a PCIe with an MXIe interface. The NI9159 contains

an FPGA (Virtex 5) and 7 input/output modules connected. Detailed information on how to use

LabVIEW with FPGAs is available in [RD6]. Fig. 6 shows an example of a project containing a

PXIe7966R with a NI1483 adapter module.

Fig. 6: Elements used in a LabVIEW project using a RIO device

In this point you are ready to start your development using these design rules. These design rules

apply only to the VI to be developed for the FPGA. The implementations of VIs for host computer

have to follow the standard procedures when developing code for LabVIEW for Windows.

IRIO Design Rules Document 15 www.i2a2.upm.es

5 DESIGN RULES FOR FLEXRIO

The FPGA VI must contain a set of terminals that are mandatory independently of the application.

These terminals are presented in Fig. 7. Different colours are used in order to identify clearly the

different functionality. Some terminals need a default value because they will be read when the

FPGA is not running yet. Independently of this the FPGA code description, the developed system

has to meet additional rules described later in this document.

5.1 Platform identification

Platform: Enum U8 indicator register. This element is the register used to identify the hardware

platform in use. The values for this terminal are shown in Table 1. The value of this terminal is read

by the software driver when the bitfile has been downloaded to the FPGA but is not running.

Table 1: Values for Platform indicator

Platform Value

FlexRIO 0

cRIO 1

R-Series 2

Warning. R Series is contemplated but is not currently supported.

5.2 Mandatory resources for a FlexRIO design.

Fig. 7 shows the basic resources to be added in a LabVIEW for FPGA design for FlexRIO. The

meaning and functionality of the different terminals are explained below.

[Important]: The FlexRIO [RD2] design rules have been defined considering

that the main objectives are: a) the acquisition and processing of analog signals

using the NI5761R adapter module; b) the acquisition and generation of digital

patterns using the NI6581R; c) the implementation of a frame grabber using the

NI1483.

IRIO Design Rules Document 16 www.i2a2.upm.es

CORE

DMA PCI/PCIe to CPUDMA

DAQStartStop

Controls

DMA channel to HOST

InitDone

Common Logic

Mandatory Indicators

DevQualityStatus

DevTemp

Fref

FPGAVIversion

DebugMode

 RIOAdapterCorrect

DevProfile

InsertedIOModuleID

Platform

HW dependend
Platform dependent

Common resources

Fig. 7: Common terminals in the VI for FlexRIO

FPGAVIversion: U8 array indicator. This indicator contains the version of the VI, which has to be

checked by the software driver. The array is composed by 2 elements, the first one includes the

major version “MM”, and the second one the minor version “mm”.

InitDone: Boolean register indicator. This indicator is used to signal that the FPGA and adapter

module are correctly initialised. Zero means that the FGPA is not ready, and 1 means that the FPGA

is ready. The designer should define when the FPGA and the I/O elements are ready to work

checking the information provided by the module manufacturer. The FPGA designer has to follow

the specific steps defined for the adapter module to perform the initialization.

Table 2: Values for Boolean InitDone indicator

Initdone Value

Correct True

Incorrect False

InsertedIOModuleID: U32 indicator. This indicator contains the identification of the inserted

module as defined in the LabVIEW/FPGA design. The values for this indicator are shown in Table

3.

IRIO Design Rules Document 17 www.i2a2.upm.es

Table 3: Values for ExpectedIOModuleID indicator

Module ExpectedIOModuleID

1483 0x109374C9

5761 0x109374C6

6581 0x10937418

RIOAdapterCorrect: Boolean indicator. This indicator signals if the detected module matches the

expected one.

Fref: U32 indicator. The indicator contains the reference clock in Hz used for the sampling rate

acquisition.

DevQualityStatus: U8 indicator. This indicator signals about the possible errors in the signal

conditioning systems if available or other possible situations related with the quality of data

acquisition process.

DevTemp: I16 indicator. This indicator contains the temperature of the RIO’s FPGA.

DevProfile: U8 indicator. This indicator is used to determine the kind of application implemented

in the FPGA. If DevProfile is equal to 0 the implementation contains a design for analog input

waveform oriented data acquisition. Then, the resources defined for this profile are mandatory. For

this profile waveform output generation, digital and analog point by point I/O are optional. If

DevProfile is equals to 1 the resources for Image profile are mandatory. Table 5 and Table 6

summarize the mandatory and optional resources. Profiles 2 and 3 require a fast controller with a

NVIDIA/FlexRIO bundle installed (NVIDIA GPU with FlexRIO).

Table 4: Values for DevProfile indicator

DevProfile Info Data acquired are sent to

0 Data acquisition CPU Memory

1 Image acquisition CPU Memory

2 Data acquisition NVIDIA GPU Memory

3 Image acquisition NVIDIA GPU Memory

Table 5: Resources for data acquisition profile (FlexRIO)

 Resources Info

 Common Mandatory

 Data acquisition (HOST or GPU) Mandatory

Analogs Analog Input Optional

IRIO Design Rules Document 18 www.i2a2.upm.es

 Resources Info

Analog Output Optional

Aux Analogs Aux Analog Input Optional

Aux Analog Output Optional

Digitals Digital Output Optional

Digital Input Optional

Aux Digitals Aux Digital Output Optional

Aux Digital Input Optional

 DDS Waveform Generation Optional

Table 6: Resources for image acquisition profile (FlexRIO)

 Resources Info

 Common Mandatory

 Image acquisition (HOST or GPU) Mandatory

 Serial communication Mandatory

Aux Analogs Aux Analog Input Optional

Aux Analog Output Optional

Digitals Digital Output Optional

Digital Input Optional

Aux Digitals Aux Digital Input Optional

Aux Digital Output Optional

DAQStartStop: Control register Boolean type. This element is the register used to start and stop

the data acquisition/generation in the RIO device. This terminal will start data

acquisition/generation process in all the FPGA resources.

DebugMode: Control register Boolean type. This element is the register used to simulate the data

acquired by the device. The behaviour of the simulation mode is defined by the developer.

IRIO Design Rules Document 19 www.i2a2.upm.es

5.3 Analog Signal Data acquisition profile

5.3.1 Mandatory resources for data acquisition profile.

Fig. 8 summarizes the different resources needed to implement the data acquisition profile (defined

here as coreDAQ). This profile sends data to host memory. These resources are:

DMATtoHOSTNCh: U16 array indicator. This indicator has the information about the number of

DMA channels implemented (the array size) and channels allocated in the different DMAs. The

values of the different array elements are the number of channels. A group is defined as the set of

channels included in one DMA.

DMATtoHOSTFrameType: U8 array indicator. This array must have the same dimension and

size that DMATtoHostNCh. Every element in the array contains the data format used for the DMA

data. The possible values for FlexRIO are: Format A and Format B.

Table 7: Possible values for an element in DMATtoHOSTFrameType array

DMATtoHostFrameType[index] Info

0 Format A

1 Format B

DMATtoHOSTSampleSize: U8 array indicator. This array has the same dimension size that

DMATtoHOSTNCh. Each element of the array contains the number of bytes used per sample. In a

specific design all the channels included in DMA must have the same value of this parameter for all

channels. Table 8 presents the valid values.

Table 8: Valid sample size in bytes.

DMATtoHOSTSampleSize [index] Info

0 Not valid

1 1 sample is one byte

2 1 sample is 2 bytes

4 1 sample is 4 bytes

8 1 sample is 8 bytes

[Example for PXIe7966R/NI5761]: DMATtoHOSTNCh[2]={1,1} This means

that we have one DMA with one channel, and another DMA with another one.

One possible case is to acquire the signal with the first DMA and the FFT with

the second one. DMATtoHOSTFrameType [2]={0, 0}, this is the same frame

IRIO Design Rules Document 20 www.i2a2.upm.es

DMATtoHOSTBlockNWords<n>: U16 array. This array has the same dimension and size than

the previous ones. Each element contains the length of the block used in the data acquisition. This

terminal informs to the software layer about the frame length. A frame is a set of samples of the

different channels involved. The length of the block is defined as S.

DMATtoHOST<n>: This element is a target to host FIFO FPGA memory which means that this

memory is inside the FPGA. This memory is different of the DRAM memory externally located

close to the FPGA (this depends on the FlexRIO used). This FIFO is always a 64-bit-wide FIFO

connected to a DMA channel to send data to the HOST. The maximum number of FIFO DMAs is

16 for FlexRIO devices. Each DMA channel will send data acquired from a set of channels. We

define and call this a DMA group.

DMATtoHOSTSamplingRate<n>: Control register. U16. There must be as many “SamplingRate”

controls as DMAs used to pass acquired data to the CPU. The data acquired will be packaged into

groups of channels and then flow through each DMA. See point 5.3.2 to understand how

information is formatted. The label used must be enumerated from 0 to Imax-1. Imax is the maximum

number of DMA channels available for the FlexRIO device (16). If the design includes more than

one DMA, there will be a set of controls that we can define as SamplingRate[0..Imax-1]. These

terminals control the sampling frequency from DMA group 0 to Imax-1.

DMATtoHOSToverflows: U16 indicator. Each bit of this indicator will show the status of each of

the device’s possible DMAs. The status will be either Correct (0) or Overflow (1).

DMATtoHOSTEnable<n>: Boolean register control. There are as many GroupEnable controls

(GroupEnable[0.. Imax-1]) as there are DMA groups. The data of the group are acquired if this

control is set to true.

type for both DMAs. DMATtoHOSTSampleSize [2]={2,8}, the signal samples

have two bytes and the FFT is estimated with 32 bits for real part and 32 bits for

imaginary part. Problem: If results are longer than 64 bits packaging will be

required. This will complicate the design.

IRIO Design Rules Document 21 www.i2a2.upm.es

CORE

DAQStartStop

Controls

InitDone

Common Logic

DevQualityStatus

DevTemp

Fref

FPGAVIversion

DebugMode

RIOAdapterCorrect

DevProfile

InsertedModules[8]

Platform

Platform dependent

Common resources

Common optional

resources

DMATtoHOSTSamplingRate0

DMATtoHOSTEnable0

DMATtoHOSTSamplingRate0

DAQStartStop

ADC

Ch[0-Jmax]

DMATtoHOST0FIFO0 DMA PCIe to CPU

DMATtoHOSTNCh

Additional

logic NoOfWFGen

DMATtoHOSTEnable0

DMATtoHOSTFrameType

DMATtoHOSTSampleSize

DMATtoHOSTBlockNWords

Fig. 8: coreDAQ. Definition of minimum elements for implementing a data acquisition system in a RIO device

The DAQ profile can be improved for supporting the debugging functionalities. Fig. 9 shows the

idea of debugging the DAQ system using predefined tests patterns.

IRIO Design Rules Document 22 www.i2a2.upm.es

CORE

DAQStartStop

Controls

InitDone

Common Logic

DevQualityStatus

DeviceTemp

Fref

FPGAVIversion

DebugMode

SlotsOK

DevProfile

InsertedModules[8]

Platform

Platform dependent

Common resources

Common optional

resources

DMATtoHOSTSamplingRate0

DMATtoHOSTEnable

DMATtoHOSTSamplingRate0

DAQStartStop

ADC

Ch[0-Jmax]

DMATtoHOST0FIFO0 DMA PCIe to CPU

DMATtoHOSTNCh

Additional

logic NoOfWFGen

DMATtoHOSTEnable0

Predefined

Pattern

DebugMode

DMATtoHOSTFrameType

DMATtoHOSTSampleSize

DMATtoHOSTBlockNWords

Fig. 9: Adding Ramp Pattern Simulation to the design.

For instance a simple hardware can be added to generate a periodic ramp signal in the FPGA to

simulate the acquisition and allow the user to test the design. The pattern could follow, for instance,

a ramp shape with a maximum value equals to the number of elements in a block (Fig. 10).

0 4095, 4096

4095

Number of sample

Amplitude

0

8191

Fig. 10: Ramp pattern generated by the FPGA.

To change the operation of coreDAQ to simulation mode, we use a control register referred to as

DebugMode

5.3.2 Data format in the DMA for Data acquisition profile.

The data acquisition profile is oriented to the acquisition of analog input channels and it supports

different formats in the data stream sent to the HOST using the DMA [RD5]. The organization of

IRIO Design Rules Document 23 www.i2a2.upm.es

the information has a strong dependency with the features available in the different bundles

(FlexRIO plus adapter module).

5.3.2.1 PXIe 7966R / 5761R

This bundle provides 4 analog input channels with 16 bits of resolution with a sampling rate up to

250MS/s. The user can use different combinations from 1 to 4 channels. Anyway, the DMA will be

always organized using U64 words. The data frame will be organized in a block of size S element.

This bundle also provide 8 DIO at a maximum sampling/update rate of 500kHz, the format for this

DMA can be also Format A or B.

5.3.2.2 PXIe 7961R / 6581R

This bundle provides 54 DIO at a maximum sampling/update rate of 100MHz. The format for DMA

will be also format A or B.

5.3.2.3 PXIe 7961R or PXIe7966R without adapter module

For debugging and testing purposes it is possible to define a design without an adapter module. In

this case the user also has to apply the format A or B.

5.3.2.4 Format A: DAQ samples

The data in the DMA must be formatted according to the following rules:

 The number of channels N is variable between 1 and 32. N is configured in the FPGA for

every DMA using the corresponding DMATtoHOSTNCh[i] element.

 W: Bytes used per sample. W=2 for instance for 5761R. All channels in the DMA use the

same W. The valid values for bytes used per samples are 1, 2, 4 or 8. W is specified in the

DMATtoHOSTSampleSize array.

 S is the number of samples S in a block. Every block has a length of U64 data with S

samples (the number of channels included is defined with N).S must be an integer number

multiple of N*W/4. This value is specified using the DMATtoHOSTBlockNWords array.

 The acquired data must be always encapsulated in 64-bit words of the DMA FIFO.

IRIO Design Rules Document 24 www.i2a2.upm.es

CHN-1 CH2 CH1 CH0

N: Number of channels S: Samples per block per channel W=2

64 bit

16 bit

1st 64 bit word

2nd 64bit word CHN-1 CH2 CH1 CH0

CHN-1 CH2 CH1 CH0Sth 64bit word

Fig. 11: Data organization in the DMA. Example for N=4

Examples. Using two channels in NI5761R. N=2. W=2 S=1024.

In this example the block is S=1024 U64 words. This means that there are 2048

samples per channel in a Block. N*W*S/4=1024.

Examples. Using one channel in NI5761R. N=1. W=2 S=1024.

In this example the block is S=1024 U64 words. This means that there are 4096

samples per channel in a Block. N*W*S/4=512.

Examples. Using three channels in NI5761R. N=3. W=2 S=?

In this example the block is S=1024 U64 words. This means that there are 4096

samples per channel in a Block. N*W*S/4 =k, S have to be a multiple of 6. For

instance, 600. The number of samples per channel will be 800.

Examples. Using 8 Digital inputs in NI6581R. N=1. W=1 S=1024.

For NI6581R the minimum number of channels to read is 8. This implies the use

of 1 byte and W=1. In this example the block is S=1024 U64 words. This means

that there are 1024 samples per digital line grouped in a port of eight bits.

IRIO Design Rules Document 25 www.i2a2.upm.es

Examples. Using 54 Digital inputs in NI6581R. N=7. W=1 S=?

The acquisition of the 54 digital input lines implies the use of 7 bytes. Here the

number of bytes per sample is 1. 1 byte means 8 Digital input lines. For instance,

S=700

Examples. Using 8 Digital inputs in NI6581R. N=1. W=1 S=1024.

For NI6581R the minimum number of channels to read is 8. This implies the use

of 1 byte and W=1. In this example the block is S=1024 U64 words. This means

that there are 1024 samples per digital line grouped in a port of eight bits.

Warning. The correct organization of DMA data frame is responsibility of

the designer. This must follow the LabVIEW for FPGA [RD5]

5.3.2.5 Format B (TBD)

Format B is not defined yet but it will allow to define a format including the timestamp of the data

acquisition device.

5.3.3 Optional resources

5.3.3.1 Analog inputs

AI<x>: I32 indicator. The FPGA LabVIEW programmer can add read-only registers (indicators)

with the last sample acquired from an analog input (see Fig. 12). This indicator will be updated at

the sampling rate programmed for the channel. The nomenclature for naming the indicator will be

"AI" followed by the number of the channel. The maximum number of AI terminals is 4.𝑥 ∈ [0,3].

IRIO Design Rules Document 26 www.i2a2.upm.es

CORE

DAQStartStop

Controls

InitDone

Common Logic

DevQualityStatus

DeviceTemp

Fref

FPGAVIversion

DebugMode

 RIOAdapterCorrect

DevProfile

InsertedModules[8]

Platform

Platform dependent

Common resources

Common optional

resources

DMATtoHOSTSamplingRate0

DMATtoHOSTEnable0

DMATtoHOSTSamplingRate0

DAQStartStop

ADC

Ch[0-Jmax]

DMATtoHOST0FIFO0 DMA PCIe to CPU

DMATtoHOSTNCh

Additional

logic

AI<x>

DMATtoHOSTEnable0

NoOfWFGen

DMATtoHOSTFrameType

DMATtoHOSTSampleSize

DMATtoHOSTBlockNWords

Fig. 12: Example of how to add an analog input terminal. X can be a value in the range 0 .. 3.

5.3.3.2 Auxiliary analog inputs

auxAI<x>: I32 indicator. The FPGA designer can include indicators identified as auxAI<x> with

LabVIEW I32 data type representing any internal variable in the FPGA. These are the user defined

registers and therefore the functionality is totally defined by the designer. For instance (Fig. 13),

you can acquire one sample from adapter module analog input channels (I16), operate the data and

connect the result to an I32 terminal labelled as auxAI0. The maximum number of auxAI is 16.

777

Fig. 13: Example of auxiliary analog input terminal

IRIO Design Rules Document 27 www.i2a2.upm.es

5.3.3.3 Analog Output

AO<x>: I32 indicator. The number of analog outputs available in FlexRIO technology is limited to

two. The identification of the terminals (controls) used to drive this analog output must be AO0 and

AO1. These terminals will be connected to the physical I/O nodes available in the adapter module.

Warning. Analog outputs are not included in any of the adapter modules

currently supported in the catalogue.

The update of the output is validated using a terminal defined as AOEnable<n>. This enables or

disables the signal generation: 0 means that output is always zero and 1 means that output is

updated. If you add to the design an AO<x> terminal the corresponding AOEnable<x> is

mandatory.

Warning. The update of analog outputs is validated with the AOEnable

terminal.

5.3.3.4 Auxiliary analog output

auxAO<x>: I32 control. The FPGA designer can include controls identified as auxAO<x> with

LabVIEW I32 data type representing any internal variable in the FPGA. These are the user defined

registers and therefore the functionality is totally defined by the designed. For instance Fig. 14

shows an example of how to multiply the input value acquired from AI0 channel by the value

available in the terminal auxAO0. The maximum number of auxAO is 16.

Fig. 14: Example of auxiliary analog output terminal

5.3.3.5 Digital input/output

The FlexRIO bundle has a lot of physical digital input/outputs. Some of them are available in the

adapter module’s connector and others in the PXI/PXIe bus. Additionally, the user can add any

digital input/output terminals to the design (see Fig. 15) only available inside the FPGA.

IRIO Design Rules Document 28 www.i2a2.upm.es

Digital I/O in NI6581. NI6581 adapter module can be configured to work on

port mode or in line mode. In this point we are considering that the user

wants to manage the digital lines individually independently of the

configuration of NI658.

Digital I/O in NI1483. NI1483 provides only 4 I/O lines that can be

independently configured as input or output.

Digital I/O in NI5761. NI5761 provides 8 bidirectional lines named

AUXI/O[0..7].

N digital inputs M digital outputs

Internal Hardware funcionalities

FlexRIO

PXIe-Lines

Adapter module

Fig. 15: Digital input/output.

DO<n>: Boolean control. The FPGA designer can include controls identified as DO<n>. These

controls will be connected physically to digital outputs in a FlexRIO adapter module. This is valid

for 5761R, 6581R and NI1483 (see Fig. 16, Fig. 17 and Fig. 18). The designer has to check the

technical details provided by the manufacturer in the product specifications.

Fig. 16: Example of connection for DO0 for NI6581 Adapter module.

IRIO Design Rules Document 29 www.i2a2.upm.es

Fig. 17: connection of eight Digital outputs in NI5761R.

Fig. 18: Connection of one digital output in NI1483R.

DI<n>: Boolean indicator. The FPGA designer can include indicators identified as DI<n>. These

indicators will be connected to physical digital inputs in a FlexRIO adapter module. Valid for

5761R, 6581R and NI1483. The designer has to check the technical details provided by the

manufacturer in the product specifications.

auxDO<n>: Boolean control. The FPGA designer can include controls identified as DO<n>. These

controls will be connected to internal FPGA signals. Valid for 5761R and 6581R

auxDI<n>: Boolean indicator. The FPGA designer can include indicators identified as auxDI<n>.

These indicators will be connected to internal FPGA signals.

5.3.3.5.1 Examples of using Digital I/O

The digital lines can be used in various ways: they can be connected to other digital lines. Fig. 19 to

Fig. 23 show some digital input/output use cases.

IRIO Design Rules Document 30 www.i2a2.upm.es

N digital inputs M digital outputs

Internal Hardware funcionalities

FPGA

PXI-Lines

DO[0-M]

PXIOUT[0-Y]

DI[0-X]

PXIIN[0-Y]

Fig. 19: Use of digital input/output. DO range from 0 to 95. PXIOUT can range from 0 to 7. PXIIN can range

from 0 to 7. DI can range from 0 to 95.

digital input 0
digital outputs 0, 1 y 2

Internal Hardware funcionalities

FPGA

PXI Trigger-Lines

DO0

DO1

DI0

PXIIN5

DO2

LabVIEW for FPGA

terminals Physical connections

to adapter module

LabVIEW for FPGA

terminals

Physical connections

to Trigger Lines

Fig. 20: Example 1 of digital I/O applications.

In Example 1, writing to control terminals named DO0, DO1 and DO2 will have direct impact on

the states of digital output lines 0, 1 and 2, respectively. The activation and deactivation of the

digital input line zero will be registered by terminal indicator named DI0. The activation and

deactivation of PXI_trigger line 5 will be registered by terminal indicator identified as PXIIN5.

IRIO Design Rules Document 31 www.i2a2.upm.es

digital input 0
digital outputs 0, 1 y 2

Internal Hardware funcionalities

FPGA

PXI-Lines

DO1

DI0

PXIIN3

PXIOUT0

PXI_trigger3PXI_trigger1

PXI_trigger0

Fig. 21: Example 2 of digital I/O applications

In this example (Example 2), the digital input line number 0 passes through the internal FPGA logic

of the hardware and drives the line PXI_trigger1. Additionally, the software can monitor the line

using the terminal indicator DI0. With the terminal DO1, the user can control some internal

hardware functionalities and other digital output lines. The register PXIOUT0 can enable or disable

some functionality and drive the PXI_trigger0 line. The digital output line 0 is activated by the

FPGA when an internal event occurs. The values received in PXI_trigger3 can be routed to a

specific output line and monitored with a register.

A more real example is the control of the start and stop of data acquisition in coreDAQ using a

digital line. Fig. 22 shows how to add this functionality to the previous coreDAQ example.

DMATtoHOSTSamplingRate0

ADC

Ch[0-N]

DMATtoHOSTEnable0

DMATtoHOSTSamplingRate0

DMA PCI/PCIe to CPU

AI[0-N]

DAQStartStop

FIFO0 DMATtoHOST0

DMATtoHOSTEnable0

DAQStartStop

Controls

Canal de transferencia

Hacia el HOST (DMA)

12 channels

DebugMode

Ramp

pattern

Logical Hardware

N digital inputs M digital outputs

Digital input 0

Logical Hardware

InitDone

Indicators

DMATtoHOSTNCh

DevQualityStatus

.

.

.

Fig. 22: Example 3 of digital I/O applications

Finally, Fig. 23 shows a LabVIEW for FPGA example using digital input/output lines in NI5781

adapter module.

IRIO Design Rules Document 32 www.i2a2.upm.es

Fig. 23: LabVIEW implementation of Digital I/O using NI5781.

Use of digital signals.

The aim of using digital signals is to provide the designer different degrees of

freedom to customize the data acquisition system. Special triggers, trigger

qualifiers can be implemented using these digital lines.

5.3.3.6 Signal generator

SGNo: U8 indicator. This indicator is initialised with the number of waveform generators included

in the design. Value zero means no signal generator implemented. The values allowed are from 0 to

2 (see Fig. 24).

In the RIO device, the user can add an element to implement signal generation using the analog

outputs. The templates provide a signal generator implemented with direct digital synthesis (DDS)

technique. In this method, the FPGA contains a memory with a predefined pattern. The details of

the implementation are explained in the document [RD7]. The terminals available to use this block

are described in Table 9.

Table 9: Terminals used by the signal generator

LabVIEW

Terminal Name

Type Functionality Notes

SGFreq<n> U32,

Control

Frequency of

the signal to be

generated

The desired frequency(freq) in Hertz and

the terminal the value following this

equation

𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑣𝑎𝑙𝑢𝑒
= 𝑓𝑟𝑒𝑞 × 𝐿𝑜𝑜𝑝𝑅𝑎𝑡𝑒

×
𝐹𝑟𝑒𝑓

232

SGAmp<n> U16, Amplitude of

the signal to be

The value to be written in the terminal

must be 0 to 4095.

IRIO Design Rules Document 33 www.i2a2.upm.es

LabVIEW

Terminal Name

Type Functionality Notes

Control generated

SGPhase<n> U32,

Control

Phase control

for the signal

The terminal contains the phase shift

SGSignalType<n> U8,

Control

Signal type

among DC,

Sine,

Triangular and

Square

Enumerated value to select the signal

needed

SGUpdateRate<n> U32,

control

Update rate

frequency used

for signal

generation

The FPGA terminal needs a value that is

the division of Fref/{desired

AOUpdateRate}. For instance if the

AOUpdateRate desired (PV value) is

50MS/S and the Fref frequency in the

FPGA is 100MHz, the value to be written

in AOUpdateRate terminal must be 2. This

relationship is defined as the “looprate” for

the signal generation

SGFref<n> U32,

Indicator

Defines the

reference

frequency used

by the signal

generator

Fref for signal generation

5.3.4 LabVIEW for FPGA VI implementation for data acquisition profile

The hardware architecture implemented in the FPGA will be composed of a specific hardware

devoted to data acquisition applications. This hardware is referenced in the document as coreDAQ.

Additional elements can be included based on the decisions taken by the designer and the resources

available in both the FPGA itself and the RIO device used. The use of this coreDAQ has some

limitations that must be considered. The implementation of a general-purpose DAQ device with

multiple functionalities is not possible in a RIO device because the resources available in the device

are limited. The insertion of the coreDAQ in the design is mandatory when you are using the data

acquisition profile (DevProfile=1).

IRIO Design Rules Document 34 www.i2a2.upm.es

The LabVIEW/FPGA VI implementing the solution is explained in the following paragraphs. The

first part of the VI has to include the necessary elements to perform the description of the design

and initialize all the resources. Fig. 24 displays the LabVIEW code used to implement the basic

initialization of the terminals.

Fig. 24: Initialization examples of some mandatory terminals in LabVIEW/FPGA. Part a

Default values for terminals: The information provided in some terminals

by the designer is essential for the software layer using the FPGA resources.

For instance terminal Platform defined the hardware used in the

implementation in LabVIEW you need to add an indicator in the VI Front

Panel with the label Platform. Then you need to select FlexRIO and select

Edit->Make Current Values Defaults. This terminal is read by the software

layer before the FPGA is running; therefore, the only method to define a

default value is this.

This code initializes the FPGA resources and verifies the correct installation of the adapter module.

Once the initialization finalizes, the InitDone terminal is set to true. The implementation of the

coreDAQ is represented in Fig. 25. This shows the basic template provided as pattern.

IRIO Design Rules Document 35 www.i2a2.upm.es

Fig. 25: Implementation of coreDAQ.

SamplingRate0

ADC

Ch[0-N]

GroupEnable0

SamplingRate0

DMA PCI/PCIe to CPU

AI[0-K]

DAQStartStop

FIFO0 DMATtoHOST0

GroupEnable0

DAQStartStop

Controls

Canal de transferencia

Hacia el HOST (DMA)

12 channels

Logical Hardware

DebugMode

Ramp

pattern

InitDone

Indicators

NCHperDMATtoHOST

DevQualityStatus

.

.

.

Fig. 26: Adding Ramp Pattern Simulation to the design.

IRIO Design Rules Document 36 www.i2a2.upm.es

5.3.4.1 Rules to be applied when designing for LabVIEW/FPGA for FlexRIO data

acquisition profile

The user can change and modify the patterns provided in order to implement its specific application.

If you change the code you need to observe the following main assumptions:

1. The configuration of coreDAQ will be controlled writing and reading registers. In

LabVIEW for FPGA terminology, these registers are controls (for writing) and indicators

(for reading). These FPGA terminals will be used by upper software layers; see Fig. 27. The

IRIO layer using the NI-RIO Linux Device Driver tries to search these terminals using their

names (label). If you do not use the correct labels the driver will not work correctly (labels

are case sensitive).

RIO
DEVICE

IRIO
Library

Input
terminals in
RIO device

are controls

Output
terminals in

RIO device are
indicators

EPICS

Fig. 27: Software applications read and write from/to RIO devices using a software interface.

2. The data types supported for these terminals are summarized in Table 10.

Table 10: LabVIEW for FPGA Data types summary.

LabVIEW data

Type

Supported Scalar/Array FIFOs (Target

to HOST, Host

to target)

Notes

Boolean Control and

indicator

Supported Supported

I8 Control and Supported Supported

[Important]: This point is important if you are trying to modify the templates

provided.

IRIO Design Rules Document 37 www.i2a2.upm.es

LabVIEW data

Type

Supported Scalar/Array FIFOs (Target

to HOST, Host

to target)

Notes

indicator

U8 Control and

indicator

Supported Supported

I16 Control and

indicator

Supported Supported

U16 Control and

indicator

Supported Supported

I32 Control and

indicator

Supported Supported

U32 Control and

indicator

Supported Supported

I64 Control and

indicator

Supported Supported

U64 Control and

indicator

Supported Supported

FXP Control and

indicator

Not

supported

Not supported Not supported by

NI-RIO Linux

Device Driver

SGL Control and

indicator

Not

supported

Not supported Not supported by

NI-RIO Linux

Device Driver

DBL Control and

indicator

Not

supported

Not supported Not supported by

LabVIEW/FPGA

EXT Control and

indicator

Not

supported

Not supported Not supported by

LabVIEW/FPGA

CXT/CDB/CSG Control and

indicator

Not

supported

Not supported Not supported by

LabVIEW/FPGA

Clusters Control and

indicator

Not

supported

Not supported Not supported by

NI-RIO Linux

Device Driver

IRIO Design Rules Document 38 www.i2a2.upm.es

Warning. The designer must use the detailed data types and the label names.

3. There will be a U8 indicator named Platform initialized to zero (FlexRIO platform),

Platform=0.

4. There will be a U8 array of 2 elements, named FPGAVIversion, which is initialised with

the VI version MM.mm. The first element will include the major version “MM”, and the

second element will have the minor version, “mm”. For instance,

FPGAVIversion[2]={2,12} means V2.12 (see Fig. 28).

Fig. 28: Versioning the bitfile.

5. There will be an U32 indicator named ExpectedIOModuleID. If the FPGA does not have

an adapter module connected, then the programmer will initialise it with the value 0; if not,

it will take the value from an I/O Modules Status element called Expected IO Module ID

(see Fig. 24 and Fig. 28).

6. There will be a Boolean indicator named RIOAdapterCorrect. If the FPGA has an adapter

module, it will be necessary to check whether the connected adapter module is the correct

one as specified in a particular bitfile version. The IO Module Status element of the FPGA

offers the Inserted IO Module ID element, which can be used for comparison with the

Expected IO Module ID. Thus, it can be determined whether the RIO adapter is the correct

one for the bitfile downloaded (see Fig. 24 and Fig. 28).

IRIO Design Rules Document 39 www.i2a2.upm.es

7. The designer has to decide when the FPGA is ready to work. This is done using the InitDone

terminal. The default value is false (initialization value) and the user sets to true whether the

initialization is complete and correct.

Warning. The initialization is different for each adapter module. Check

manufacturer information to confirm what is the best method to initialize

the adapter module.

8. There will be a U32 indicator named Fref, which will be initialised with the reference clock

value for sampling purposes. The sampling frequency may vary, but it is always a divisor of

the reference clock (see Fig. 24 and Fig. 28).

9. There will be a set of indicators that should be initialised with the corresponding values

explained above. These indicators are DevQualityStatus and DevTemp,

10. DMA transfers are used to move large amounts of data, waveforms and/or images. Fig. 29

represents an example of the implementation of DMA movement in LabVIEW for a FPGA.

There is a while loop (infinite loop) extracting the data from a FIFO memory and sending

them to the HOST using the DMA. In LabVIEW for FPGA, this loop is implemented in the

hardware using a 40 MHz clock. Therefore, if you need sampling rates above 40 MS/s, you

must change the code (see Fig. 30). This code allows checking if data is available in the

FIFO and moving it using DMA checking DMA overflow.

Fig. 29: Example of a LabVIEW/FPGA node to move data from the FPGA to the HOST.

[DMA concept]: RIO devices with PCI and PCIe interfaces have bus master

capability, which means that when the RIO device must move data to the host, it

takes control of the PCI/PCIe bus to move the data directly to the host RAM

memory. This functionality is traditionally known as direct memory access

(DMA). The advantage of DMA is that it avoids the intervention of the CPU in

data transference and therefore increases the performance in the data acquisition

process (see Fig. 31).

IRIO Design Rules Document 40 www.i2a2.upm.es

Fig. 30: Alternative implementation of DMA data transfer. In this example, the user can select any of the clocks

available in the RIO device, such as 100 MHz or 200 MHz. These frequencies allow for data movement with high

sampling rates.

HOST

Bridge

CPU

RAM

memory

Industrial PC

PCI Express-

PXIe “bridge”

PCI Express-

PXIe “bridge”

PXIe bus

PXIe

chassis

PCIe link

PCI/PCIe

Bridge

RIO Device

PCIe

FPGA

Adapter

Module

PCIe

Address
0x………..

Address: 0x………..

Data: 0xf……...

RIO Device

Fig. 31: Representation of DMA in a PCIe architecture. DMA is implemented with bus master capabilities of

PCIe devices.

11. There should be at least one data acquisition channel moving the data from the FPGA to the

host through DMA.

12. The use of DMAs is exclusively for the transfer of data acquired by the FPGA. These data

are typically the samples of a set of channels of an adapter module connected to the FPGA.

Fig. 32 shows how to obtain the ADC codes from channels AI0 and AI1, how to pack the

data in a U64 word, and how to write the data to a FIFO memory. Remember that DMA data

organization must follow the predefined format.

IRIO Design Rules Document 41 www.i2a2.upm.es

Fig. 32: LabVIEW code for reading analog input channels

13. A set of data acquisition channels is sent using DMAs. All the channels that are grouped in a

DMA must have the same sampling frequency. Therefore, there will be as many sampling

rate controls as DMAs (see Fig. 33).

Sampling clock

Control for controlling

the samplin rate

Reading analog

inputs

Writting data to FIFO

Checking overload

voltages

Fig. 33: Example of the implementation of data acquisition with LabVIEW for FPGA

14. A control to start and stop the acquisition by software is needed. The designer can include

additional digital lines and/or state machines to meet its specific needs. For instance, a

trigger can be implemented using a PXI trigger line. When the user starts the data

acquisition the state machine transits to waiting for trigger state and then when trigger

raises, the data acquisition starts.

15. There will be an I16 array indicator named DMATtoHOSTNCh. The number of elements in

this array (array size) must match the number of DMAs in use. Each element of the array

must be initialised with the number of channels included in each DMA. For instance, a

design using 3 DMA groups must contain an array defined as DMATtoHOSTNCh [3] =

IRIO Design Rules Document 42 www.i2a2.upm.es

{3,4,2}, which indicates that DMA 0 uses 3 channels, DMA 1 uses 4 channels, and DMA 2

uses 2 channels. This rule is a limitation because the user cannot change the number of

elements included in the DMA stream during execution. Fig. 33 shows an example of how

to define only one DMA channel with 2 channels in the stream.

16. The sampling frequency control is performed through a register. The number of these

controls will be the same as the number of DMA groups. The value written to this register is

the division factor to be applied to the reference clock to obtain the desired sampling rate.

The reference clock is the clock used by the RIO device to perform its internal operations.

Typical values for the reference clock are 40 MHz, 50 MHz, 100 MHz, and 200 MHz. For

instance, module NI5761 uses a reference clock of 100 MHz.

N ÷

Fref

FS=Fref/Ne.g: SamplingRate0

(LabVIEW register control)

Fig. 34: Sampling frequency control.

5.3.5 Summary of resources used for Data acquisition profile

Table 11 summarizes the terminals (control and indicators) used by data acquisition profile in

FlexRIO platform. The templates for the bundles PXIe-7961R/NI6581 and PXIe-7966R/NI5761

(see paragraph 7.2) have been implemented using these terminals.

Table 11: Summary of the terminals used in data acquisition profile

Terminal Name Data

type

Type Detail Information Values Initialize

before

Run?

Platform U8 Indicator This terminal

defines the form

factor used in

the FPGA

implementation

Mandatory 0- FlexRIO

1- cRIO

2- R Series

YES

Common Terminals for FlexRIO

FPGAVIversion Array

U8

Indicator Contains the VI

version, 2

elements. One

for MM major

version, and the

next one mm

minor version.

MM.mm

Mandatory For instance 1.1

FPGAVIversion[

0]=1

FPGAVIversion[

1]=1

YES

InitDone Boolean Indicator This terminal

must be set to

true when the

FPGA is

Mandatory True=OK

False=NOK

N/A

IRIO Design Rules Document 43 www.i2a2.upm.es

Terminal Name Data

type

Type Detail Information Values Initialize

before

Run?

initialized

RIOAdapterCorrect Boolean Indicator Boolean

indicating if the

adapter module

is the correct for

the application

Mandatory Defined by NI NO

InsertedIOModuleID U32 Indicator Contains the

Module ID of

the

corresponding

module

Mandatory Defined by NI NO

Fref U32 Indicator Contains the

Reference clock

of the FPGA for

sampling rate

Mandatory YES

DevQualityStatus U8 Indicator This indicator

will show the

status of the

acquisition

Mandatory NO

DevTemp I16 Indicator This indicator

will show the

temperature of

the FPGA

Mandatory NO

Devprofile

U8 Indicator This indicator

defines the

implementation

in the FPGA

(DAQ, Image,

etc.)

Mandatory NO

DAQStartStop Boolean Control This terminal

must be set to

true to start data

acquisition

Mandatory NO

Specific Terminals for data acquisition profile

DMATtoHOSTNCh U16,

array

Indicator Describes the

number of

DMAs

implemented in

the FPGA. The

array must be

initializes with

the number of

channels

available in

Mandatory YES

IRIO Design Rules Document 44 www.i2a2.upm.es

Terminal Name Data

type

Type Detail Information Values Initialize

before

Run?

each DMA.

DMATtoHOSTFrameType U8,

array

Indicator Describes the

frame type used

in the DMA

frame

Mandatory YES

DMATtoHOSTSampleSize U8,

array

Indicator Size in bytes for

the channel

sample

Mandatory YES

DMATtoHOSTBlockNWords U16,

array

Indicator Length of the

block used for

each DMA

 YES

DebugMode Boolean Control If debug is true

the FPGA will

simulate the

acquired data.

Otherwise,

physical signals

are acquired

Mandatory

DMATtoHOST<n> FIFO DMA to

HOST

FIFO memory

in the FPGA

Mandatory n ={0 .. 16} N/A

DMATtoHOSTSamplingRate

<n>

U16 Control Integer number

obtained as

Sampling

rate/Fref

Mandatory

n ={0 .. 16} NO

DMATtoHOSTEnable<n> Boolean Control Enable or

disable write to

DMA FIFO

Mandatory

n ={0 .. 16} YES

DMATtoHOSTOverflows U16 Indicator Status of the

different DMA

FIFO

Mandatory YES

Optional Resources

AI<n> I32 Indicator Digital sample

for channel <n>

Optional n ={0 .. 3}

3 because of

hardware

limitation

auxAI<n> I32 Indicator Auxiliary

internal FPGA

variables

Optional n ={0 .. 15}

auxAO<n> I16 Control Auxiliary

internal FPGA

variables

Optional n ={0 .. 15}

IRIO Design Rules Document 45 www.i2a2.upm.es

Terminal Name Data

type

Type Detail Information Values Initialize

before

Run?

DI<n> Boolean Indicator Digital line Optional n ={0 .. 7}

NI5761R

n ={0 .. 53}

NI6581R

DO<n> Boolean Control Digital line Optional n ={0 .. 7}

NI5761R

n ={0 .. 53}

NI6581R

auxDI<n> Boolean Indicator Digital line Optional n ={0 .. 15}

auxDO<n> Boolean Control Digital line Optional n ={0 .. 15}

SGNo U8 Control Number of

waveform

generators

Optional 0 .. 2 YES

SGSignalType<n> U8 Control Signal shape to

be generated

Optional n={1..2}

SGAmp<n> U32 Control DSS

accumulator

increment

Optional n={1..2}

SGFreq<n> U32 Control Phase control Optional n={1..2}

SGPhase<n> U32 Control Phase control Optional n={1..2}

SGUpdateRate<n> U32 Control Update rate Optional n={1..2}

SGFref<n> U32 Indicator Reference

frequency

Optional n={1..2}

5.4 Image acquisition profile

5.4.1 Mandatory resources for Image acquisition profile

Fig. 35 summarizes the different resources needed to implement the image acquisition profile

(defined here as coreIMAGE). These resources are:

IRIO Design Rules Document 46 www.i2a2.upm.es

DMATtoHOSTNCh: U16 array indicator. This indicator has the information about the number of

DMA channels implemented (the array size) and channels allocated in the different DMAs. The

values of the different array elements are the number of channels. A group is defined as the set of

channels included in one DMA.

DMATtoHOSTFrameType: U8 array indicator. This array has the same dimension size that

DMATtoHOSTNCh. Every element in the array contains the data format used for the DMA data.

The possible values for FlexRIO are: Format A and Format B.

Table 12: Possible values for an element in DMATtoHOSTFrameType array

DMATtoHOSTFrameType [index] Info

0 Format A

1 Format B

DMATtoHOSTSampleSize: U8 array indicator. This array has the same dimension size that

DMATtoHOSTNCh. Every element in the array contains the number of bytes used per sample. In a

specific design all the channels included in DMA must have the same value of this parameter for all

channels. Table 8 presents the valid values.

Table 13: Valid sample size in bytes

DMATtoHOSTSampleSize [index] Info

0 Not valid

1 1 sample is one byte

2 1 sample is 2 bytes

4 1 sample is 4 bytes

8 1 sample is 8 bytes

DMATtoHOST<n>: This element is a target to host FIFO FPGA memory. This means that this

memory is inside the FPGA. This memory is different of the DRAM memory externally located to

the FPGA. This FIFO is always a 64-bit-wide FIFO connected to a DMA channel to send data to

the HOST. The maximum number of FIFO DMAs is 16 for FlexRIO devices). Each DMA channel

will send data acquired from a set of channels. We define this as DMA group.

DMATtoHOSTEnable<n>: Boolean register control. There are as many DMATtoHOSTEnable

controls (DMATtoHOSTEnable [0.. Imax-1]) as there are DMA groups. The data of the group are

acquired if this control is set to true. DMATtoHOSTEnable is complex to design because have to

be synchronized with the starting of a new frame.

DMATtoHOSTOverflows: U16 indicator. Each bit of this indicator will show the status of each

device’s possible DMAs. The status will be either Correct (0) or Overflow (1).

IRIO Design Rules Document 47 www.i2a2.upm.es

coreImage

DAQStartStop

Controls

InitDone

Common Logic

DevQualityStatus

DeviceTemp

Fref

FPGAVIversion

DebugMode

RIOAdapterCorrect

DevProfile

InsertedIOModuleID

Platform

Platform dependent

Common resources

Common optional

resources

DMATtoHOSTSamplingRate0

DMATtoHOSTEnable0

DMATtoHOSTSamplingRate0

DAQStartStop

CameraLink

FG

DMATtoHOST0FIFO0 DMA PCIe to CPU

DMATtoHOSTNCh

Additional

logic

SGNo

DMATtoHOSTEnable0

UART Logic
TX/RX*

UART Configuration*

DMATtoHOSTOverflows

DMATtoHOSTFrameType

DMATtoHOSTSampleSize

Image Acq profile

resources

*This represents a list of connections

Fig. 35: coreIMAGE. Minimum element for implementing data acquisition in a RIO device

The Cameralink standard defines different communication modes. These are related with the

amount of information transmitted in each clock cycle. Additionally, the standard defines a serial

line that allows to send/receive command/status information to/from camera. The FPGA must

contain the logic supporting this interface because the UART is implemented in the adapter module.

The terminals needed to do this are:

Configuration: U8 Control. This terminal defines the cameralink mode. The possible values are

listed in Table 14

Table 14: Valid modes

Configuration Mode

0 Base

IRIO Design Rules Document 48 www.i2a2.upm.es

Configuration Mode

1 Medium

2 Full/Extended/10-tap

SignalMapping: U8 control. This terminal allows defining the cameralink data mode. The possible

values are shown in Table 15.

Table 15: Valid signal mapping.

SignalMapping Mode

0 Standard

1 Basler 10 tap

2 Vosskühler 10-tap

Fig. 36: Cameralink signals.

IRIO Design Rules Document 49 www.i2a2.upm.es

LineScan: Boolean. This configures if the camera is an area scan mode (FALSE) or line mode

(TRUE).

FVALHigh: Boolean. This terminal sets the polarity of the FVAL signal. TRUE is active high,

FALSE active low.

LVALHigh: Boolean. This terminal sets the polarity of the LVAL signal. TRUE is active high,

FALSE active low.

DVALHigh: Boolean. This terminal sets the polarity of the DVAL signal. TRUE is active high,

FALSE active low.

SpareHigh: Boolean. This terminal sets the polarity of the Spare signal. TRUE is active high,

FALSE active low.

ControlEnable: Boolean. This terminal activates the signal driving in cameralink.

uartTransmit: Boolean control. This terminal activates the transmission of a byte using the serial

line.

uartReceive: Boolean. This terminal activates the reception of one byte in the serial line.

uartSetBaudRate: Boolean. This terminal activates a new configuration of the Baudrate. The

baudrate is specified in the uartBaudRate control.

uartBaudRate: U8. This control has an enumerated value with the Baudrate to be used in the serial

line. The allowed values are: 1, 9,600 baud; 2 = 19,200 baud; 4 = 38,400 baud ; 8 = 57,600 baud ;

16 = 115,200 baud ; 32 = 230,400 baud; 64 = 460,800 baud; 128 = 921,600 baud.

uartByteMode: Boolean. This terminal allows configuring the mode for transmitting a collection

of bytes. If true the user can send an array of bytes. Check the LabVIEW pattern provided to see the

utility of this mode. The byte mode is not currently supported.

DataBytetoTx: U8. Byte to transmit.

uartRxData: U8. Data received.

uartTxReady: Boolean. Terminal indicating the uart is ready to transmit data.

uartRxReady: Boolean. Terminal indicating the uart has received a data.

uartBreakIndicator: Boolean. This signal indicates that the received byte being output on UART

Read Data was received as part of a break condition. A break condition occurs when the RX serial

input signal is held low by the camera for longer than the time required to send a full byte. In this

case, the data byte received has the value 0 and the UART Break Indicator will be TRUE when the

byte is read.

uartFrammingError: Boolean. This signal indicates that the received byte being output on UART

Read Data did not have a valid stop bit. This means that a transmission error occurred and that the

received data may not be reliable.

uartOverrunError: Boolean. When this signal rises, it means that the receive buffer has filled and

one or more bytes of received data have been lost. This occurs when data is not read out from the

UART quickly enough.

IRIO Design Rules Document 50 www.i2a2.upm.es

5.4.2 Data format in the DMA for Image Acquisition profile

5.4.2.1 PXIe 7966R / NI1483

The PXIe 7966R / 1483 bundle is oriented for the implementation of image data acquisition

systems. The frame grabber is implemented using the FPGA and the NI1483 adapter module

because it contains a cameralink interface.

5.4.2.1.1 Format A.

The data in the DMA must be formatted according to the following rules:

 The number of channels N is always 1. The corresponding DMATtoHOSTNCh [i] element

has to be 1.

 W: Bytes used per sample. W=1 for instance for NI1483 connected to a grayscale camera.

All channels in the DMA use the same W. The valid values for bytes used per samples are 1,

2, 4 or 8. W is specified in the DMATtoHOSTSampleSize array.

 S is the number of samples S in a block. Every block has a length of U64 data with S

samples (the number of channels included is defined with N). S must be an integer number

multiple of N*W/4. This value is specified using the DMATtoHOSTBlockNWords array.

 The acquired data must be always encapsulated in 64-bit words of the DMA FIFO.

CHN-1 CH2 CH1 CH0

N: Number of channels S: Samples per block per channel W=2

64 bit

16 bit

1st 64 bit word

2nd 64bit word CHN-1 CH2 CH1 CH0

CHN-1 CH2 CH1 CH0Sth 64bit word

Fig. 37: Data organization in the DMA. Example for N=4

Examples. Using one cameralink in NI1483. N=1. W=1 S=1024.

In this example the block is S=1024 U64 words. This means that there are 1024

samples per channel in a Block. N*W*S/4=1024.

IRIO Design Rules Document 51 www.i2a2.upm.es

Warning. The correct organization of DMA data frame is responsibility of

the designer. This must follow the LabVIEW for FPGA [RD5]

5.4.2.1.2 Format B (TDB).

This format is TBD.

5.4.3 Summary of resources used for image acquisition profile

Table 16 summarizes the terminals (control and indicators) used by data acquisition profile in

FlexRIO platform. The template for the bundle PXIe-7966R/NI1483 (see paragraph 7.2) has been

implemented using these terminals.

Table 16: Summary of the terminals used by the image acquisition profile

Terminal Name Data type Type Detail Informatio

n

Values Initialized

before

run?

Platform U8 Indicator This terminal

defines the

form factor

used in the

FPGA

implementatio

n

Mandatory 0- FlexRIO

1- cRIO

2- R Series

YES

Common Terminals for FlexRIO

FPGAVIversion Array

U8

Indicator Contains the

VI version, 2

elements. One

for MM major

version, and

the next one

mm minor

version.

MM.mm

Mandatory For instance 1.1

FPGAVIversion[0

]=1

FPGAVIversion[1

]=1

YES

InitDone Boolean Indicator This terminal

must be set to

true when the

FPGA is

initialized

Mandatory True=OK

False=NOK

N/A

RIOAdapterCorrect Boolean Indicator Boolean

indicating if

the adapter

module is the

correct for the

application

Mandatory by NI NO

InsertedIOModuleID U32 Indicator Contains the Mandatory Defined by NI NO

IRIO Design Rules Document 52 www.i2a2.upm.es

Terminal Name Data type Type Detail Informatio

n

Values Initialized

before

run?

Module ID of

the

corresponding

module

Fref U32 Indicator Contains the

Reference

clock of the

FPGA for

sampling rate

Mandatory YES

DevQualityStatus U8 Indicator This indicator

will show the

status of the

acquisition

Mandatory NO

DevTemp I16 Indicator This indicator

will show the

temperature of

the FPGA

Mandatory NO

Devprofile

U8 Indicator This indicator

defines the

implementatio

n in the FPGA

(DAQ, Image,

etc.)

Mandatory YES

DebugMode Boolean Control If debug is

true the FPGA

will simulate

the acquired

data.

Otherwise,

physical

signals are

acquired

Mandatory NO

DAQStartStop Boolean Control This terminal

must be set to

true to start

data

acquisition

Mandatory

Specific Terminals for image acquisition profile

DMATtoHOSTNCh Array

U16

Indicator Describes the

number of

DMAs

implemented

in the FPGA.

The array

must be

initializes

Mandatory YES

IRIO Design Rules Document 53 www.i2a2.upm.es

Terminal Name Data type Type Detail Informatio

n

Values Initialized

before

run?

with the

number of

channels

available in

each DMA.

DMATtoHOSTFrameType Array U8 Indicator Describes the

frame type

used in the

DMA frame

Mandatory YES

DMATtoHOSTSampleSize Array U8 Indicator Size in bytes

for the

channel

sample

Mandatory YES

DMATtoHOSTBlockNWor

ds

Array U8 Indicator Length of the

block

Mandatory YES

DMATtoHOST<n> FIFO DMA to

HOST

FIFO memory

in the FPGA

Mandatory n ={0 .. 16} N/A

DMATtoHOSTSamplingRa

te<n>

U16 Control Integer

number

obtained as

Sampling

rate/Fref

Mandatory

n ={0 .. 16}

DMATtoHOSTEnable<n> Boolean Control Enable or

disable write

to DMA FIFO

Mandatory

n ={0 .. 16}

DMATtoHOSTOverflows U16 Indicator Status of the

different

DMA FIFO

Mandatory

SignalMapping U8 Control Select the

signal

mapping for

the

cameralink

interface

0: Standard

1: Basler 10-

tap

2: Voskhuler

10 tap

Mandatory SignalMapping YES

Configuration U8 Control Select

cameralink

interface type

Mandatory Configuration YES

IRIO Design Rules Document 54 www.i2a2.upm.es

Terminal Name Data type Type Detail Informatio

n

Values Initialized

before

run?

0: Base

1: Medium

2: full

LineScan Boolean Control Set CL Line

Scan

Mandatory LineScan YES

FVALHigh Boolean Control Set CL FVAL

Active High

Mandatory FVALHigh YES

LVALHigh Boolean Control Set CL LVAL

Active High

Mandatory LVALHigh YES

DVALHigh Boolean Control Set CL DVAL

Active High

Mandatory DVALHigh YES

SpareHigh Boolean Control Set CL Spare

Active High

Mandatory SpareHigh YES

ControlEnable Boolean Control CL Control

Enable

Mandatory ControlEnable YES

uartTransmit Boolean Control Activate to

transmit data

Mandatory uartTransmit

uartReceive Boolean Control Activate to

receive data

Mandatory uartReceive

uartSetBaudRate Boolean Control Activate set

Baud Rate

Mandatory True/False

uartBaudRate U8 Control Enumerated

value with the

baudrate

9.6, 19.2,

38.4, 57.6,

115.2, 230.4,

460.8,

or 921.6 kbps

Mandatory

uartByteMode Boolean Control Mandatory uartByteMode

uartTxByte U8 Control Byte to be

transmitted

Mandatory DataBytetoTx

uartRxBytea U8 Indicator Data received Mandatory uartRxData

uartTxReady Boolean Indicator Transmitter

ready

Mandatory uartTxReady

uartRxReady Boolean Indicator Receiver Mandatory uartRxReady

IRIO Design Rules Document 55 www.i2a2.upm.es

Terminal Name Data type Type Detail Informatio

n

Values Initialized

before

run?

Ready

uartBreakIndicator Boolean Indicator Uart break

indicator

Mandatory uartBreakIndicator

uartFrammingError Boolean Indicator Frame Error Mandatory uartFrammingErro

r

uartOverrunError Boolean Indicator Overrun Error Mandatory uartOverrunError

Optional Resources for Image Profile

auxAI<n> I32 Indicator Auxiliary

internal FPGA

variables

Optional n ={0 .. 15}

auxAO<n> I32 Control Auxiliary

internal FPGA

variables

Optional n ={0 .. 15}

DO<n> Boolean Control Digital line Optional n ={0 .. 3}

DI<n> Boolean Control Digital line Optional n ={0 .. 3}

The sum of digital

input plus outputs

never be more

than 4

auxDI<n> Boolean Indicator Digital line Optional n ={0 .. 15}

auxDO<n> Boolean Control Digital line Optional n ={0 .. 15}

5.5 Analog Signal Data acquisition profile (data to GPU).

The implementation of the profile for acquiring data and moving it to GPU is exactly the same as

described previously for the HOST with the difference of the DMA resources used. This section

defines the terminal labels for DMA to GPU implementation.

Warning. The implementation of Data Acquisition profile to send the data to

GPU needs to use the specific hardware/software bundle NVIDIA/FlexRIO.

IRIO Design Rules Document 56 www.i2a2.upm.es

5.5.1 Mandatory resources for data acquisition profile (data to GPU).

Fig. 38summarizes the different resources needed to implement the data acquisition profile (defined

here as coreDAQGPU). This profile sends data to GPU memory. These resources are:

DMATtoGPUNCh: U1

6 array indicator. This indicator has the information about the number of DMA channels

implemented (the array size) and channels allocated in the different DMAs. The values of the

different array elements are the number of channels. A group is defined as the set of channels

included in one DMA.

DMATtoGPUFrameType: U8 array indicator. This array must have the same dimension and size

that DMATtoGPUNCh. Every element in the array contains the data format used for the DMA data.

The possible values for FlexRIO are: Format A and Format B.

Table 17: Possible values for an element in DMATtoGPUFrameType array

DMATtoHostFrameType[index] Info

0 Format A

1 Format B

DMATtoGPUSampleSize: U8 array indicator. This array has the same dimension size that

DMATtoHOSTNCh. Every element in the array contains the number of bytes used per sample. In a

specific design all the channels included in DMA must have the same value of this parameter for all

channels. Table 8 presents the valid values.

Table 18: Valid sample size in bytes

DMATtoHOSTSampleSize [index] Info

0 Not valid

1 1 sample is one byte

2 1 sample is 2 bytes

4 1 sample is 4 bytes

8 1 sample is 8 bytes

[Example for NVIDIA/PXIe7966R/NI6761]: DMATtoGPUNCh[2]={1,1} This

means that we have one DMA with one channel, and another DMA with another

channel. One possible case is acquiring the signal with the first DMA and the

FFT with the second one. DMATtoGPUFrameType[2]={0, 0}, this is the same

frame type for both DMAs. DMATtoGPUSampleSize[2]={2,8}, the signal

IRIO Design Rules Document 57 www.i2a2.upm.es

DMATtoGPUBlockNWords<n>: U16 array indicator. This array has the same dimension and

sizes that the previous ones. Each element contains the length of the block used in the data

acquisition. This terminal will inform to the software layer about the frame length. A frame is a set

of samples of the different channels. The length of the block is defined as S.

DMATtoGPU<n>: This element is a target to host FIFO FPGA memory (for LabVIEW for FPGA

there is no difference between host memory and GPU memory). This means that this memory is

inside the FPGA. This memory is different of the DRAM memory externally located close to the

FPGA (this depends on the FlexRIO used). This FIFO is always a 64-bit-wide FIFO connected to a

DMA channel to send data to the GPU. The maximum number of FIFO DMAs is 16 for FlexRIO

devices. Each DMA channel will send data acquired from a set of channels. We define and call this

a DMA group.

DMATtoGPUSamplingRate<n>: Control register. U16. There must be as many “SamplingRate”

controls as DMAs used to pass acquired data to the CPU. The data acquired will be packaged into

groups of channels and then flow through each DMA. See point 5.3.2 to understand how

information is formatted. The label used must be enumerated from 0 to Imax-1. Imax is the maximum

number of DMA channels available for the FlexRIO device (16). If the design includes more than

one DMA, there will be a set of controls that we can define as SamplingRate[0..Imax-1]. These

terminals control the sampling frequency from DMA group 0 to I-1.

DMATtoGPUEnable<n>: Boolean register control. There are as many GroupEnable controls

(GroupEnable[0.. Imax-1]) as there are DMA groups. The data of the group are acquired if this

control is set to true.

DMATtoGPUOverflows: U16 indicator. Each bit of this indicator will show the status of each of

the device’s possible DMAs. The status will be either Correct (0) or Overflow (1).

samples have two bytes and the FFT is estimated with 32 bits for real part and 32

bits for imaginary one. Problem: If results are longer than 64 bits packaging will

be required. This will complicate the design.

IRIO Design Rules Document 58 www.i2a2.upm.es

CORE

DAQStartStop

Controls

InitDone

Common Logic

DevQualityStatus

DeviceTemp

Fref

FPGAVIversion

DebugMode

SlotsOK

DevProfile

InsertedModules[8]

Platform

Platform dependent

Common resources

Common optional

resources

DMATtoGPUSamplingRate0

DMATtoGPUEnable0

DMATtoGPUSamplingRate0

DAQStartStop

ADC

Ch[0-Jmax]

DMATtoGPU0FIFO0 DMA PCIe to GPU

DMATtoGPUNCh

Additional

logic

NoOfWFGen

DMATtoGPUEnable0

DMATtoGPUFrameType

DMATtoGPUSampleSize

DMATtoGPUBlockNWords

DMATtoGPUOverflows

GPU DAQ profile

resources

Fig. 38: coreDAQGPU. Minimum element for implementing data acquisition in a RIO device

The coreDAQGPU profile can be improved for supporting the debugging functionalities. Fig. 39

shows the idea of debugging the DAQ system using predefined tests patterns.

IRIO Design Rules Document 59 www.i2a2.upm.es

DAQStartStop

Controls

InitDone

Common Logic

DevQualityStatus

DeviceTemp

Fref

FPGAVIversion

DebugMode

SlotsOK

DevProfile

InsertedModules[8]

Platform

Platform dependent

Common resources

Common optional

resources

DMATtoGPUSamplingRate0

DMATtoGPUEnable0

DMATtoGPUSamplingRate0

DAQStartStop

DMATtoGPU0FIFO0 DMA PCIe to GPU

DMATtoGPUNCh

Additional

logic

NoOfWFGen

DMATtoGPUEnable0

DMATtoGPUFrameType

DMATtoGPUSampleSize

DMATtoGPUBlockNWords

DMATtoGPUOverflows

GPU DAQ profile

resources

CORE

ADC

Ch[0-Jmax]
Predefined

Pattern

DebugMode

Fig. 39: Adding Ramp Pattern Simulation to the design.

For instance a simple hardware can be added to generate a periodic ramp signal in the FPGA to

simulate the acquisition and allow the user to test the design. The pattern could follow, for instance,

a ramp shape with a maximum value equals to the number of elements in a block (Fig. 40).

0 4095, 4096

4095

Number of sample

Amplitude

0

8191

Fig. 40: Ramp pattern generated by the FPGA.

To change the operation of coreDAQGPU to simulation mode, we use a control register referred to

as DebugMode.

IRIO Design Rules Document 60 www.i2a2.upm.es

5.6 Image acquisition profile (data to GPU)

The implementation of the profile for acquiring images and moving them to GPU is exactly the

same as described previously for the HOST with the difference of the DMA resources used. This

section defines the terminal labels for DMA to GPU implementation.

Warning. The implementation of Data Acquisition profile to send the data to

GPU needs to use the specific hardware/software bundle NVIDA/FlexRIO.

5.6.1 Mandatory resources for Image acquisition profile

Fig. 41 summarizes the different resources needed to implement the image acquisition profile

(defined here as coreIMAGEGPU). These resources are:

DMATtoGPUNCh: U16 array indicator. This indicator has the information about the number of

DMA channels implemented (the array size) and channels allocated in the different DMAs. The

values of the different array elements are the number of channels. A group is defined as the set of

channels included in one DMA.

DMATtoGPUFrameType: U8 array indicator. This array has the same dimension size that

DMATtoGPUNCh. Every element in the array contains the data format used for the DMA data. The

possible values for FlexRIO are: Format A and Format B.

Table 19: Possible values for an element in DMATtoHOSTFrameType array

DMATtoHOSTFrameType [index] Info

0 Format A

1 Format B

DMATtoGPUSampleSize: U8 array indicator. This array has the same dimension size that

DMATtoGPUNCh. Each element of the array contains the number of bytes used per sample. In a

specific design all the channels included in DMA must have the same value on this parameter for all

channels. Table 20 presents the valid values.

Table 20: Valid sample size in bytes

DMATtoGPUSampleSize [index] Info

0 Not valid

1 1 sample is one byte

2 1 sample is 2 bytes

4 1 sample is 4 bytes

8 1 sample is 8 bytes

IRIO Design Rules Document 61 www.i2a2.upm.es

DMATtoGPU<n>: This element is a target to host FIFO FPGA memory. This means that this

memory is inside the FPGA. This memory is different of the DRAM memory externally located to

the FPGA. This FIFO is always a 64-bit-wide FIFO connected to a DMA channel to send data to

the HOST. The maximum number of FIFO DMAs is 16 for FlexRIO devices). Each DMA channel

will send data acquired from a set of channels. We define this as DMA group.

DMATtoGPUEnable<n>: Boolean register control. There are as many DMATtoGPUEnable

controls (DMATtoGPUEnable [0.. Imax-1]) as there are DMA groups. The data of the group are

acquired if this control is set to true. The enable action of the DMATtoGPUEnable is complex to

design because have to be synchronized with the starting of a new frame.

DMATtoGPUOverflows: U16 indicator. Each bit of this indicator will show the status of each of

the device’s possible DMAs. The status will be either Correct (0) or Overflow (1).

coreImage

DAQStartStop

Controls

InitDone

Common Logic

DevQualityStatus

DeviceTemp

Fref

FPGAVIversion

DebugMode

SlotsOK

DevProfile

InsertedModules[8]

Platform

Platform dependent

Common resources

Common optional

resources

DMATtoGPUSamplingRate0

DAQStartStop

CameraLink

FG

DMATtoHOST0FIFO0 DMA PCIe to CPU

DMATtoGPUNCh

Additional

logic

SGNo

DMATtoGPUEnable0

UART Logic
TX/RX

UART Configuration

DMATtoGPUFrameType

GPU Image Acq.

profile

resources

DMATtoGPUSamplingRate0

DMATtoGPUEnable0

DMATtoGPUSampleSize

DMATtoGPUOverflows

Fig. 41: coreIMAGEGPU. Minimum element for implementing data acquisition in a RIO device

The remaining elements for completing this template are the same explained for coreIMAGE

profile.

IRIO Design Rules Document 62 www.i2a2.upm.es

6 DESIGN RULES FOR CRIO

The FPGA VI must contain a set of terminals that are mandatory independently of the application. These
terminals are presented in different colours in order to identify clearly the different functionalities. Some
terminals need a default value because they will be read when the FPGA is not running yet. Additionally to
this section, the FPGA code has to meet some additional rules described later in this document.

Warning. LabVIEW terminal labels are case sensitive.

6.1 Platform identification

Platform: Enum U8 Indicator register. This element is the register used to identify the hardware

platform in use. The values for this terminal (see Table 21) are read by the software driver when the

bitfile has been downloaded to the FPGA but is not running.

Table 21: Values for Platform indicator

Platform Value

FlexRIO 0

cRIO 1

R-Series 2

6.2 Mandatory resources for a cRIO design

Fig. 42 shows the basic resources to be added in a LabVIEW for FPGA design for cRIO. The

meaning and functionality of the different terminals are explained below.

[Important]: The cRIO design rules have been defined considering that the

main objectives are: a) the implementation of analog and digital I/O oriented

applications for sampling rates below 250kS/s. b) The implementation of analog

input waveform oriented applications

IRIO Design Rules Document 63 www.i2a2.upm.es

DAQStartStop

Controls

InitDone

Common Logic

Mandatory Indicators

DevQualityStatus

DevTemp

Fref

FPGAVIversion

DebugMode

cRIOModulesOK

DevProfile

InsertedIOModulesID[16]

Platform

HW dependend
Platform dependent

Common resources

for cRIO

Fig. 42: Common terminals in the VI for cRIO

FPGAVIversion: U8 array indicator. This indicator contains the version of the VI and is checked

by the software driver. The array only uses two elements. The first one includes the major version

“MM”, and the second one the minor version, “mm”.

InitDone: Boolean register indicator. This indicator signals that the FPGA and modules are

correctly initialised. “Zero” means that the FGPA is not ready, and “One” means that the FPGA is

ready. The designer should define when the FPGA and the I/O elements are ready to work checking

the information provided by the manufacturer. The FPGA designer has to follow the specific steps

defined for the I/O modules to execute the initialization.

Table 22: Values for Boolean Initdone indicator

Initdone Value

Correct True

Incorrect False

InsertedIOModulesID[16]: Indicator Array of U16. Each position contains the Module ID as

defined by National Instruments [RD6] and shown in Table 23. The size of this array should match

the size of the chassis used.

Table 23: Module ID for cRIO

Module ExpectedIOModuleID I/O resources

IRIO Design Rules Document 64 www.i2a2.upm.es

Module ExpectedIOModuleID I/O resources

NO Module 0x0000 No module installed

NI9205 0x712a 16/32 analog inputs

NI9264 0x 745C 16 analog outputs

NI9401 0x7130 TTL 8 I/O

NI9425 0x712F 24 V, Sinking Digital Input, 32 Ch. Module

NI9426 0x736A 32-Channel, 24 V, 7 µs Sourcing Digital Input Module

NI9476 0x7133 24 V, Sourcing Digital Output, 32 Ch. Module

NI9477 0x71CB 60 V, Sinking Digital Output, 32 Ch. Module

cRIOModulesOK: Boolean. The expected modules and the modules installed match.

Fref: U32 indicator. The indicator will contain the reference clock used for the sampling rate

acquisition.

DevQualityStatus: U8 indicator. This indicator informs the software driver about the possible

errors in the signal conditioning or other possible situations.

DevTemp: I16 indicator. This indicator contains the temperature value of the cRIO FPGA.

DevProfile: U8 indicator. This indicator is used to determine the kind of application implemented

in the FPGA. The value specified here is very important because it defines the resources that

mandatory will be searched and the optional resources used. The meaning of DevProfile is different

in the different platforms, if DevProfile=0 the implementation contains a design for analog

waveform oriented data acquisition, then the resources defined for that profile are mandatory. For

this profile waveform output generation, digital and analog point by point I/O are optional. If

DevProfile=1 the profile Point By Point data acquisition is implemented. Table 24 and Table 25

summarize the mandatory and optional resources for the profiles. In the case of Point by Point

acquisition at least one of the optional elements must be implemented.

Table 24: Values for DevProfile indicator

DevProfile Info

0 Data acquisition

1 Point by Point acquisition (PBP)

Table 25: Resources for data acquisition profile (cRIO)

Resources Info

IRIO Design Rules Document 65 www.i2a2.upm.es

Resources Info

Common Mandatory

Data acquisition Mandatory

Analog Input Optional

Analog Output Optional

Aux Analog Input Optional

Aux Analog Output Optional

Digital Output Optional

Aux Digital Output Optional

Digital Input Optional

Aux Digital Input Optional

DDS Waveform Generation Optional

Table 26: Resources for point by point (PBP) acquisition profile (cRIO)

Resources Info

Common Mandatory

Data acquisition forbidden

Analog Input Optional

Analog Output Optional

Aux Analog Input Optional

Aux Analog Output Optional

Digital Output Optional

Aux Digital Output Optional

Digital Input Optional

Aux Digital Input Optional

DDS Waveform Generation Optional

IRIO Design Rules Document 66 www.i2a2.upm.es

DAQStartStop: Boolean Control register. This element is the register used to start and stop the data

acquisition/generation in the RIO device. This terminal will start data acquisition/generation process

in all the FPGA resources.

DebugMode: Boolean Control register. This element is the register used to simulate the data

acquired by the device. The behaviour of the simulation mode is defined by the developer.

6.3 Analog Signal Data acquisition profile (DMA-based)

6.3.1 Mandatory resources for data acquisition profile

DMATtoHOSTNCh: U16 array indicator. This indicator has the information about the number of

DMA channels implemented and channels allocated inside the different DMAs. The values of the

different array elements are the number of channels. A group is defined as the set of channels

included in one DMA (see Fig. 43).

DMATtoHOSTFrameType: U8 array indicator. This array has the same dimension size that

DMATtoHOSTNCh. Every element in the array contains the data format used for the DMA data.

The possible values for cRIO are described in Table 27.

Table 27: Possible values for an element in DMATtoHOSTFrameType array

DMATtoHOSTFrameType [index] Info

0 Format A

1 Format B

DMATtoHOSTSampleSize: U8 array indicator. This array has the same dimension size that

DMATtoHOSTNCh. Every element in the array contains the number of bytes used per sample. In a

specific design all the channels included in DMA (DMA group) must have the same value of this

parameter for all channels. The valid values are these:

Table 28: Valid sample size in bytes

DMATtoHOSTSampleSize[n] Info

0 Not valid

1 1 sample is one byte

2 1 sample is 2 bytes

4 1 sample is 4 bytes

8 1 sample is 8 bytes

IRIO Design Rules Document 67 www.i2a2.upm.es

DMATtoHOSTBlockNWords<n>: U16 array indicator. This array has the same dimension and

sizes that the previous ones. Each element contains the length of the block used in the data

acquisition. This terminal will inform to the software layer about the frame length. A frame is a set

of samples of the different channels. The length of the block is defined as S.

DMATtoHOST<n>: This element is a target to host FIFO FPGA memory. This means that this

memory is inside the FPGA implemented with the embedded RAM in the Virtes-5 LX110. This

memory is used as a FIFO and it is always a 64-bit-wide FIFO connected to a DMA channel to send

data to the HOST. The maximum number of FIFO DMAs is 3 for cRIO devices. If you have more

than one DMA channel there will be as many DMATtoHOST elements as DMAs up to 3. The

identification has to be correlative. Each DMA channel will send data acquired from a group of

channels. Every DMA is a DMA group.

DMATtoHOSTSamplingRate<n>: Control register. U16. There must be as many

“DMATtoHOSTSamplingRate” controls as DMAs used to pass acquired data to the CPU. The data

acquired will be packaged into groups of channels and then sent through each DMA. The label used

must be enumerated from 0 to Imax-1. Imax is the maximum number of DMA channels available for

the cRIO device (3). If the design includes more than one DMA, there will be a set of controls that

we can define as DMATtoHOSTSamplingRate0 [0..Imax-1]. These terminals control the sampling

frequency from DMA group 0 to I-1.

DMATtoHOSTEnable<n>: Boolean register control. There are as many DMATtoHOSTEnable

controls (DMATtoHOSTEnable [0.. Imax-1]) as DMA groups. The data of the group are acquired if

this control is set to true.

[Example for NI9159/NI9205]: DMATtoHOSTNCh [1] = {8} Eight channels

for data acquisition. DMATtoHOSTFrameType [1]={0};

DMATtoHOSTSampleSize [1] = {4}. The number of samples per channels

depends on the configuration of the cRIO module in the LabVIEW Projects. Raw

configuration provides 2 bytes (I16) and calibrated provides 4 bytes because

NI9205 represent the data in fixed point format with 21 bits, 5 for the integer

part and 16 for the decimal one. These 21 bits are allocated in 4 bytes in the

DMA as an I32 data.

IRIO Design Rules Document 68 www.i2a2.upm.es

DMATtoHOSTOverflows: U16 indicator. Each bit of this indicator will show the status of each of

the device’s possible DMAs. The status will be either Correct (0) or Overflow (1).

CORE

DAQStartStop

Controls

InitDone

Common Logic

DevQualityStatus

DevTemp

Fref

FPGAVIversion

DebugMode

cRIOModulesOK

DevProfile

InsertedIOModules[16]

Platform

Platform dependent

Common resources

DMATtoHOSTSamplingRate0

DMATtoHOSTEnable0

DMATtoHOSTSamplingRate0

DAQStartStop

ADC

Ch[0-Jmax]

DMATtoHOST0FIFO0 DMA PCIe to CPU

DMATtoHOSTNCh

Additional

logic

NoOfWFGen

DMATtoHOSTEnable0

DMA-Based DAQ

resources

DMATtoHOSTFrameType

DMATtoHOSTSampleSize

DMATtoHOSTBlockNWords

Fig. 43: coreDAQ. Minimum element for implementing data acquisition in a cRIO device

6.3.2 Data format in the DMA for Data acquisition profile.

The data acquisition profile is oriented for the acquisition of analog input channels and supports

different formats in the data stream sent to the HOST using the DMA.

6.3.2.1 NI9159/NI9205

Every NI9205 provides 16/32 analog inputs. The NI9205 can be configured in raw format or in the

calibrated format. One channel sample uses an I16 in raw mode and 21 bits in calibrated one. This

point should be considered when defining the bytes used for sample.

Warning. NI9205 is the only module with ADC functionality.

6.3.2.2 Format A: DAQ samples

The data in the DMA must be formatted according to the following rules:

IRIO Design Rules Document 69 www.i2a2.upm.es

 The number of channels N is variable between 1 and 256. N is configured in the FPGA for

every DMA using the corresponding DMATtoHOSTNCh [i] element.

 W: Bytes used per sample. W=2 for instance for NI9205 in raw format or W=4 in calibrated

one. All channels in the DMA use the same W. The valid values for bytes used per samples

are 1, 2, 4 or 8. W is specified in the DMATtoHOSTSampleSize array.

 S is the number of samples S in a block. Every block has a length of U64 data with S

samples (the number of channels included is defined with N).S must be an integer number

multiple of N*W/4. This value is specified using the DMATtoHOSTBlockNWords array.

 The acquired data must be always encapsulated in 64-bit words of the DMA FIFO (see an

example in Fig. 44 and Fig. 45).

CHN-1 CH2 CH1 CH0

N: Number of channels S: Samples per block per channel W=2

64 bit

16 bit

1st 64 bit word

2nd 64bit word CHN-1 CH2 CH1 CH0

CHN-1 CH2 CH1 CH0Sth 64bit word

Fig. 44: Data organization in the DMA. Example for N=4

IRIO Design Rules Document 70 www.i2a2.upm.es

CH1 CH0

N: Number of channels S: Samples per block per channel W=4

64 bit

32 bit

1st 64 bit word

2nd 64bit word

Sth 64bit word

CH3 CH2

CH31 CH30

CH31 CH30

16th 64bit word

Fig. 45: Data organization in the DMA. Example for N=32

6.3.2.3 Format B: (TBD)

6.3.3 Optional resources

The optional resources checked in this profile are listed below (see Fig. 46).

IRIO Design Rules Document 71 www.i2a2.upm.es

DAQStartStop

Controls

InitDone

Common Logic

Mandatory Indicators

DevQualityStatus

DevTemp

Fref

FPGAVIversion

DebugMode

cRIOModulesOK

DevProfile

InsertedIOModulesID[16]

Platform

HW dependend
Platform dependent

Common resources

ADC

AI0

ADC

AI1

DI

DI

Fig. 46 coreDAQ. DAQ resources

6.3.3.1 Analog inputs

AI<x>: I32 indicator. The FPGA LabVIEW programmer can add read-only registers (indicators)

with the last sample acquired from an analog input. This indicator will be updated at the sampling

rate programmed for the channel. The nomenclature for naming the indicator will be "AI" followed

by the number of the channel. The maximum number of AI terminals is 32*14=448 (14 slots with

NI9205) The AI<x> are only used if there are NI9205 modules installed.

6.3.3.2 Auxiliary analog inputs

auxAI<x>: I32 indicator. The FPGA designer can include indicators identified as auxAI<N> with

LabVIEW I32 data type representing any internal variable in the FPGA. For instance, you can

IRIO Design Rules Document 72 www.i2a2.upm.es

acquire one sample from adapter module analog input channels (I16), operate the data and connect

the result to an I32 terminal labelled as auxAI0. The maximum number is 16.

6.3.3.3 Analog Output

AO<x>: I32 indicator. These terminals will be connected to the physical I/O nodes available in I/O

module. The maximum number of analog outputs is 32.

6.3.3.4 Auxiliary analog output

auxAO<x>: I32 control. The FPGA designer can include controls identified as auxAO<x> with

LabVIEW I32 data type representing any internal variable in the FPGA. The maximum number de

auxAO is 16.

6.3.3.5 Digital input/output

DO<n>: Boolean control. The FPGA designer can include controls identified as DO<n>. These

controls will be connected to physical digital outputs in an I/O module. The maximum number of

DO is 96.

DI<n>: Boolean indicator. The FPGA designer can include indicators identified as DI<n>. The

maximum number is 96.

auxDO<n>: Boolean control. The FPGA designer can include controls identified as DO<n>. These

controls will be connected to internal FPGA signals. The maximum number is 16.

auxDI<n>: Boolean indicator. The FPGA designer can include indicators identified as auxDI<n>.

These indicators will be connected to internal FPGA signals in a FlexRIO adapter module. The

maximum number is 16.

6.3.3.6 Signal generator

SGNo: U8 indicator. This indicator is initialised with the number of waveform generators included

in the design. A null value means no signal generator implemented. The values allowed are from 0

to 16.

In the cRIO device, the user can add an element to implement signal generation using the analog

outputs. The templates provide a signal generator implemented with direct digital synthesis (DDS)

technique. In this method, the FPGA contains a memory with a predefined pattern. The details of

the implementation are explained in the document [RD7]. The terminals available to use this block

are described in Table 29.

Table 29: Signal generator terminals

LabVIEW

Terminal Name

Type Functionality Notes

SGFreq<n> U32,

Control

Frequency of the signal to be

generated

The desired frequency (freq) in

Hertz and the terminal follow

this equation

𝑆𝐺𝐹𝑟𝑒𝑞 = 𝑓𝑟𝑒𝑞 ×
232

𝐹𝑟𝑒𝑓𝑜
 𝑥 SGUpdateRate

SGFref is the frequency used

IRIO Design Rules Document 73 www.i2a2.upm.es

LabVIEW

Terminal Name

Type Functionality Notes

in the output generator

SGAmp<n> U16,

Control

Amplitude of the signal to be

generated

The value to be written in the

terminal must be a value from

0 to 32767.

SGPhase<n> U32,

Control

Phase control for the signal The terminal contains the

phase shift

SGSignalType<n> U8,

Control

Signal type among DC, Sine,

Triangular and Square

Enumerated value to select the

signal needed

SGUpdateRate<n> U32,

control

Update rate frequency used

for signal generation

The analog output is updated

using a frequency equals to the

SGUpdateRate

SGFref<n> U32,

Indicator

Defines the reference

frequency used by the signal

generator

Defines the reference

frequency used by the signal

generator

6.3.4 Summary of resources for cRIO DAQ profile

Table 30 summarizes the terminals (control and indicators) used by data acquisition profile in cRIO

platform. The template dataacquisitionDMA (see paragraph 7.3) has been implemented using these

terminals.

Table 30: Summary of resources for cRIO DAQ profile

Terminal Name Data

type

Type Detail Informatio

n

Values Initialized

before

run?

Platform U8 Indicator This

terminal

defines the

form factor

used in the

FPGA

implementa

tion

Mandatory 0- FlexRIO

1- cRIO

2- R Series

YES

Mandatory resources for cRIO

FPGAVIversion Array

U8

Indicator Contains

the VI

version, 2

elements.

One for

MM major

Mandatory For instance 1.1

FPGAVIversion[0

]=1

FPGAVIversion[1

YES

IRIO Design Rules Document 74 www.i2a2.upm.es

Terminal Name Data

type

Type Detail Informatio

n

Values Initialized

before

run?

version, and

the next one

mm minor

version.

MM.mm

]=1

InitDone Boolean Indicator This

terminal

must be set

to true

when the

FPGA is

initialized

Mandatory True=OK

False=NOK

N/A

InsertedOModulesID Array

U16

Indicator Numeric

array of

values

indicating

the c-

Modules

IDs

detected

Mandatory Defined by NI NO

cRIOModulesOK Boolean Indicator I/O

Modules

correctly

detected

Mandatory NO

Fref U32 Indicator Contains

the

Reference

clock of the

FPGA for

sampling

rate

Mandatory YES

DevQualityStatus U8 Indicator This

indicator

will show

the status of

the

acquisition

Mandatory NO

DevTemp I16 Indicator This

indicator

will show

the

temperature

of the

FPGA

Mandatory NO

DevProfile

U8 Indicator This

indicator

defines the

Mandatory YES

IRIO Design Rules Document 75 www.i2a2.upm.es

Terminal Name Data

type

Type Detail Informatio

n

Values Initialized

before

run?

implementa

tion in the

FPGA

(DAQ,

Image, etc.)

DebugMode Boolean Control If debug is

true the

FPGA will

simulate the

acquired

data.

Otherwise,

physical

signals are

acquired

Mandatory NO

DAQStartStop Boolean Control This

terminal

must be set

to true to

start data

acquisition

Mandatory

Specific Terminals for cRIO DAQ profile

DMATtoHOSTNCh Array

U16

Indicator Describes

the number

of DMAs

implemente

d in the

FPGA. The

array must

be

initializes

with the

number of

channels

available in

each DMA.

Mandatory n ={0 .. 2} YES

DMATtoHOSTFrameType Array U8 Indicator Describes

the frame

type used in

the DMA

frame

Mandatory n ={0 .. 2} YES

DMATtoHOSTSampleSize Array U8 Indicator Size in

bytes for

the channel

sample

Mandatory n ={0 .. 2} YES

DMATtoHOSTBlockNWords Array Indicator Length of Mandatory n ={0 .. 2} YES

IRIO Design Rules Document 76 www.i2a2.upm.es

Terminal Name Data

type

Type Detail Informatio

n

Values Initialized

before

run?

U16 the block

DMATtoHOST<n> FIFO DMA

target to

HOST

FIFO

memory in

the FPGA

Mandatory n ={0 .. 2} N/A

DMATtoHOSTSamplingRate

<n>

U16 Control Integer

number

obtained as

Sampling

rate/Fref

Mandatory

n ={0 .. 2}

DMATtoHOSTEnable<n> Boolean Control Enable or

disable

write to

DMA FIFO

Mandatory

n ={0 .. 2}

DMATtoHOSTOverflows U16 Indicator Status of

the different

DMA FIFO

Mandatory

Optional Resources for this profile

AI<n> I32 Indicator Digital

sample

Optional n ={0 .. 255}

auxAI<n> I32 Indicator Auxiliary

internal

FPGA

variables

Optional n ={0 .. 255}

AO<n> I32 Indicator Digital

Sample

Optional n ={0 .. 255}

auxAO<n> I32 Control Auxiliary

internal

FPGA

variables

Optional n ={0 .. 255}

AOEnable<n> Boolean Control Enable or

Disable

analog

output

 n ={0 .. 255}

DO<n> Boolean Control Digital line Optional n ={0 .. 255}

auxDO<n> Boolean Control Digital line Optional n ={0 .. 255}

DI<n> Boolean Indicator Digital line Optional n ={0 .. 255}

auxDI<n> Boolean Indicator Digital line Optional n ={0 .. 255}

IRIO Design Rules Document 77 www.i2a2.upm.es

Terminal Name Data

type

Type Detail Informatio

n

Values Initialized

before

run?

SGNo U8 Control Number of

waveform

generators

Optional n ={0 .. 255} YES

SGSignalType<n> U8 Control Signal

shape to be

generated

Optional User selectable YES

SGFreq<n> U32 Control DSS

accumulato

r increment

Optional n ={0 .. 255} YES

SGAmp<n> U16 Control Optional n ={0 .. 255} YES

SGPhas<n> U32 Control Phase

control

Optional n ={0 .. 255} YES

SGUpdateRate<n> U32 Control Update rate Optional n ={0 .. 255}

SGFref<n> U32 Indicator Reference

frequency

Optional n={1..255}

6.4 Point by Point acquisition profile

This profile is oriented to the implementation of analog and digital I/O operations.

6.4.1 Mandatory resources for point by point I/O profile

SamplingRate<n>: U16 control. This terminal allows to program the sampling rate. The sampling

rate value in S/s is the Fref value divided by SamplingRate<n>. This sampling rate is used for

controlling the data acquisition/generation of the different I/O elements in the cRIO chassis.

6.4.2 Optional resources

The following resources are optional and can appear or not in the design.

6.4.2.1 Analog inputs

AI<x>: I32 indicator. The FPGA LabVIEW programmer can add read-only registers (indicators)

with the last sample acquired from an analog input. This indicator will be updated at the sampling

rate programmed for the channel. The nomenclature for naming the indicator will be "AI" followed

by the number of the channel. The maximum number of AI terminals is 32*14=384 (14 slots with

NI9205). The AI<x> are only used if there are NI9205 modules installed.

6.4.2.2 Auxiliary analog inputs

auxAI<x>: I32 indicator. The FPGA designer can include indicators identified as auxAI<N> with

LabVIEW I32 data type representing any internal variable in the FPGA. For instance, you can

IRIO Design Rules Document 78 www.i2a2.upm.es

acquire one sample from adapter module analog input channels (I16), operate the data and connect

the result to an I32 terminal labelled as auxAI0. Maximum number of auxAI is 16.

6.4.2.3 Analog Output

AO<x>: I32 control. These terminals will be connected to the physical I/O nodes available in I/O

module. The maximum number of AO terminals is 16*14=224 (14 slots with NI9264).

6.4.2.4 Auxiliary analog output

auxAO<x>: I32 control. The FPGA designer can include controls identified as auxAO<x> with

LabVIEW I32 data type representing any internal variable in the FPGA. The maximum number de

auxAO is 256.

6.4.2.5 Digital input/output

DO<n>: Boolean control. The FPGA designer can include controls identified as DO<n>. These

controls will be connected to physical digital outputs in an I/O module. The maximum number of

DO is 256.

DI<n>: Boolean indicator. The FPGA designer can include indicators identified as DI<n>. The

maximum number is 256.

auxDO<n>: Boolean control. The FPGA designer can include controls identified as DO<n>. These

controls will be connected to internal FPGA signals. The maximum number is 256.

auxDI<n>: Boolean indicator. The FPGA designer can include indicators identified as auxDI<n>.

These indicators will be connected to internal FPGA signals in a cRIO adapter module. The

maximum number is 256.

6.4.2.6 Signal Generator

See signal generator description in data acquisition profile.

6.4.3 Summary of resources for cRIO Point by Point profile

Table 31 summarizes the terminals (control and indicators) used by data acquisition profile in cRIO

platform. The template pointbypoint (see paragraph 7.3) has been implemented using these

terminals.

Table 31: Summary of resources for PBP Profile

Terminal Name Data

type

Type Detail Information Values Initialized

before

run?

Platform U8 Indicator This terminal

defines the form

factor used in the

FPGA

implementation

Mandatory 0- FlexRIO

1- cRIO

2- R Series

YES

Common Terminals for cRIO

FPGAVIversion Array

U8

Indicator Contains the VI

version, 2 elements.

One for MM major

version, and the next

Mandatory For instance 1.1

FPGAVIversion[

0]=1

YES

IRIO Design Rules Document 79 www.i2a2.upm.es

Terminal Name Data

type

Type Detail Information Values Initialized

before

run?

one mm minor

version. MM.mm

FPGAVIversion[

1]=1

InitDone Boole

an

Indicator This terminal must

be set to true when

the FPGA is

initialized

Mandatory True=OK

False=NOK

N/A

InsertedOModules

ID

Array

U16

Indicator Numeric array of

values indicating the

c-Modules IDs

detected

Mandatory Defined by NI NO

cRIOModulesOK Boole

an

Indicator I/O Modules

correctly detected

Mandatory NO

Fref U32 Indicator Contains the

Reference clock of

the FPGA for

sampling rate

Mandatory YES

DevQualityStatus U8 Indicator This indicator will

show the status of

the acquisition

Mandatory NO

DevTemp I16 Indicator This indicator will

show the

temperature of the

FPGA

Mandatory NO

Devprofile

U8 Indicator This indicator

defines the

implementation in

the FPGA

(DAQ, Image, etc.)

Mandatory YES

DebugMode Boole

an

Control If debug is true the

FPGA will simulate

the acquired data.

Otherwise, physical

signals are acquired

Mandatory NO

DAQStartStop Boole

an

Control This terminal must

be set to true to start

data acquisition

Mandatory

Specific Terminals for Point by Point acquisition profile

SamplingRate<n> U16 Control Integer number

obtained as

Sampling rate/Fref

Mandatory

n ={0 .. 2}

Optional Resources for Point by Point profile

IRIO Design Rules Document 80 www.i2a2.upm.es

Terminal Name Data

type

Type Detail Information Values Initialized

before

run?

AI<n> I32 Indicator Digital sample Optional n ={0 .. 255}

auxAI<n> I32 Indicator Auxiliary internal

FPGA variables

Optional n ={0 .. 255}

AO<n> I32 Indicator Digital Sample Optional n ={0 .. 255}

auxAO<n> I32 Control Auxiliary internal

FPGA variables

Optional n ={0 .. 255}

AOEnable<n> Boole

an

Control Enable or Disable

analog output

 n ={0 .. 255}

DO<n> Boole

an

Control Digital line Optional n ={0 .. 255}

auxDO<n> Boole

an

Control Digital line Optional n ={0 .. 255}

DI<n> Boole

an

Indicator Digital line Optional n ={0 .. 255}

auxDI<n> Boole

an

Indicator Digital line Optional n ={0 .. 255}

SGNo U8 Control Number of

waveform

generators

Optional n ={0 .. 255} YES

SGSignalType

<n>

U8 Control Signal shape to be

generated

Optional User selectable YES

SGUpdateRate

<n>

U32 Update

rate

frequen

cy used

for

signal

generati

on

The analog

output is updated

using a

frequency equals

to the

SGUpdateRatexf

refo

SGUpdateRate

<n>

U32, control Update

rate

frequen

cy used

for

signal

generati

on

SGFreq<n> U32 Control DSS accumulator

increment

Optional n ={0 .. 255} YES

SGAmp<n> U16 Control Optional n ={0 .. 255} YES

SGPhase<n> U32 Control Phase control Optional n ={0 .. 255} YES

IRIO Design Rules Document 81 www.i2a2.upm.es

Terminal Name Data

type

Type Detail Information Values Initialized

before

run?

SGFref<n> U32 Indicator Reference frequency Optional n={1..255}

6.5 cRIO Examples

6.5.1 cRIO Basic requirements for the examples provided

This section describes the system requirements for running the examples using a NI CompactRIO

chassis and seven NI CompactRIO I/O Modules hosted in the chassis. NI 9159, 14-slot

CompactRIO Chassis, LX 110 FPGA, MXIe

 NI 9205 32-Ch ±200 mV to ±10 V, 16-Bit, 250 kS/s AI Module

 NI 9264 16-Ch ±10 V, 16-Bit, 25 kS/s Analog Output Module

 NI 9477 32-Ch 24 V, 8 μs, Sinking DO Module

 NI 9425 32-Ch 24 V, 7 μs, Sinking DI Module

 NI 9476 32-Ch 24 V, 500 μs, Sourcing DO Module

 NI 9426 32-Ch 24 V, 7 μs, Sourcing DI Module

 NI 9401 8-Ch, 5 V/TTL High-Speed Bidirectional Digital I/O Module

The module placement for running the examples is depicted in Fig. 47.

9264 9205 9401 9477 9426 9476 9425
Slot9 Slot10 Slot11 Slot12Slot1 Slot2 Slot3 Slot4

AI0+AI1+AI2+

COMM
DIO0 DIO4

Slot14Slot13Slot6 Slot7 Slot8Slot5

NI9159 Chassis

AO0+AO1+AO2+

COMM
DO0+COMM DI0+COMM DO0+COMM DI0+COMM

Fig. 47 NI9159 Chassis Generic Architecture

6.5.2 Module Identification in the Chassis

A NI9159 chassis has 14 slots for connecting compact RIO modules (see Fig. 48). The number

scheme of the modules inserted in each slot are identified from Module 1 to Module 14 numbered

from left to right. The examples described in these sections are implemented with 7 modules.

IRIO Design Rules Document 82 www.i2a2.upm.es

Fig. 48 Chassis NI9159 and Slot Numbering Schema

6.5.3 Module Description and Signal Interconnections

The subsequent section describes the modules used in the system and the signal interconnection

among them supporting the connections schema depicted in Fig. 47.

6.5.3.1 NI9205 Analog Input Module

This module is used to measure analog input (AI) signals (see Table 32). The first three AI ports of

NI9205 module is connected to the first three ports of the NI9264 module (Module 1) (see Fig. 49

and Fig. 50)

 AO0 NI9264 Module1 to AI0 Module2

 AO1 NI9264 Module1 to AI1 Module2

 AO2 NI9264 Module1 to AI2 Module2

The COMM port of Module1 and Module2 is interconnected. Aforementioned connections are

Referenced Single-Ended (RSE mode).

Table 32 NI9205 Module Relevant Characteristics

NI9205 Module relevant characteristics (extracted from datasheet)

Conversion Time
R Series Expansion chassis: 4.50µs

All other chassis: 4.00µs

IRIO Design Rules Document 83 www.i2a2.upm.es

Fig. 49 NI9205 Signal Connector

Fig. 50 Signal connection in RSE mode

6.5.3.2 NI9264 Analog Output Connection

The NI9264 (see Fig. 51) is used to generate analog output signals. The connection to Module2 is

described in Table 34.

IRIO Design Rules Document 84 www.i2a2.upm.es

Fig. 51 : Signals in the NI9264 analog output module

Fig. 52 Connection for analog output channels

Table 33 NI9264 relevant characteristics

NI9264 Module relevant characteristics (extracted from datasheet)

Settling time (100pF load,

to 1 LSB)

20V Step 20µs

1V Step 15 µs

0.1V Step 13 µs

Update Time

1 Channel 3.1 µs min.

2 Channels 5.3 µs min.

3 Channels 7.5 µs min.

IRIO Design Rules Document 85 www.i2a2.upm.es

NI9264 Module relevant characteristics (extracted from datasheet)

16 Channels 37 µs min.

Table 34 Interconnection between NI9264 and NI9205

NI9264 Analog output channel NI9205 Module/channel

Module1 /Channel0 Module2 /Channel0

Module1 /Channel1 Module2 /Channel1

Module1 /Channel2 Module2 /Channel2

6.5.3.3 NI9401 Digital Input/Output

The NI9401 is an 8-Channel Digital Input/Output TTL Module. The Port0 and the Port4 is externally

interconnected.

Warning. This Module has to be configured to set the direction of the I/O

ports

IRIO Design Rules Document 86 www.i2a2.upm.es

Fig. 53 Signal connector for NI9401

Fig. 54 Signal connection for Digital Input and Output in NI9401.

Table 35 NI9401 relevant characteristics

NI9401 Digital Input/Output Module relevant characteristics (extracted from

datasheet)

Maximum input signal switching

frequency by number of input channels,

per channel

8 input channels 9 MHz

4 input channels 16 MHz

2 input channels 30 MHz

IRIO Design Rules Document 87 www.i2a2.upm.es

NI9401 Digital Input/Output Module relevant characteristics (extracted from

datasheet)

Maximum output signal switching

frequency by number of output channels

with an output load of 1mA, 50pF, per

channel

8 output channels 5 MHz

4 output channels 10 MHz

2 output channels 20 MHz

6.5.3.4 NI9477 Digital sinking output module

The NI9477Sinking Digital Output module is connected to the Module5 NI9426.

Fig. 55 NI9477 32 channel digital output Signal Connector

Fig. 56 Connection of an external device to NI9477

IRIO Design Rules Document 88 www.i2a2.upm.es

Table 36 NI9477 Relevant Characteristics

NI9477 0-60V Sinking Digital Output Module relevant characteristics (extracted

from datasheet)

Maximum Update Rate 8 µs max.

Propagation Delay 1 µs max.

Warning. Check the proper connection to avoid damages in the module.

6.5.3.5 NI9426 Sourcing Digital Input Module

The NI9426 is a sourcing digital input module. One digital output (DO) channel of the NI9477

Module4 is connected to a digital input (DI) of the NI9426 Module5.

Fig. 57 Signals in the NI9426 digital input module

IRIO Design Rules Document 89 www.i2a2.upm.es

Fig. 58 Connecting a device to the NI9426

Table 37 NI9426 Relevant Characteristics

NI9426 32 channel 24V Sourcing Digital Input Module relevant characteristics

(extracted from datasheet)

Digital Logic Levels Input Voltages
OFF State ≥ (Vsup - 5 V)

ON State ≤ (Vsup - 10 V)

Update/Transfer time 7 µs max.

Setup time 1 µs min.

6.5.3.6 NI9425 Sinking Digital Input Module

NI9425 is used as Digital Input (DI) module and it is connected to the NI9476 Module6.

Fig. 59 Connection in NI9425 module

IRIO Design Rules Document 90 www.i2a2.upm.es

Fig. 60 Connecting a device to the NI9425

Table 38 NI9425 Relevant Characteristics

NI9425 32 channel 24V Sinking Digital Input Module relevant characteristics

(extracted from datasheet)

Digital Logic Levels Input Voltages
OFF State ≤ 5 V

ON State ≥ 10 V

Update/Transfer time 7 µs max.

Setup time 1 µs min.

6.5.3.7 NI9476 Sourcing Digital Output Module

The NI9476 32-Channel 24V sourcing digital output module

Fig. 61 NI9476 Signal Connector

IRIO Design Rules Document 91 www.i2a2.upm.es

Fig. 62 Connection of a device to the NI9476

Table 39 NI9476 Relevant Characteristics

NI9476 32 channel 24V Sourcing Digital Output Module relevant characteristics

(extracted from datasheet)

Maximum Update Rate 40 µs max.

Propagation Delay 500 µs max.

6.5.4 System General Description

6.5.4.1 General Block Diagram

The two examples for cRIO architecture presented bellow have the same high level architecture

depicted in

Module Check
I/O Acq State

Machine

Common Control

Reading

Fig. 63 Functional Architecture

6.5.4.2 State Machine

The system behaviour as a state machine composed by three main states, as represented Fig. 64.

Initialization state performs the system power up, checks the system configuration (all modules are

present in their corresponding chassis slot and working properly). Wait state waits for operator click

start button in the HMI. The Operation State Machine (a.k.a. I/O Acquisition Loop) performs the

acquisition and generation of signals in a continuous loop. The system continues its operation till

the DAQStartStop remains true, if DAQStartStop changes to false the state machine returns to the

Initialization state.

IRIO Design Rules Document 92 www.i2a2.upm.es

Initialization state

Power up
Checks configuration

Sets NI9401 lines
direction

Wait state

Waits for user start

Power up fail

Power up OK
Waiting

DAQStartStop = TRUE

DAQStartStop = FALSE

DAQStartStop = TRUE

Reset or Power ON

Operation state

Continuous loop

Acquires/Generates
I/O and internal

data

Fig. 64 cRIO I/O Acquisition Loop State Machine

6.5.4.3 Operation State: I/O Acquisition Loop

This piece of logic implemented in the FPGA performs the main functionality of the modelled

system. The concrete behaviour of each system is described in the following sections.

6.5.4.4 System Management: Host HMI

The CompactRIO systems are based on reconfigurable FPGA chassis and I/O modules. The

LabVIEW FPGA Module enables to translate this code directly to hardware. This process requires

the compilation of the code to be synthesized to a bitfile (see Fig. 65).

Fig. 65 LabVIEW FPGA Compilation Process

IRIO Design Rules Document 93 www.i2a2.upm.es

To ease the process of downloading the bitfile to the FPGA, run and monitor the application, a host

HMI application has been developed using LabVIEW on Windows OS. Running this application,

the bitfile is downloaded to the FPGA target of the chassis and the state machine (described in

6.5.4.2) is started. From this point, the application remains communicating with the FPGA code to

monitor the status of the system. Fig. 66 depicts the front panel of a generic host application.

Fig. 66 HMI Host Application Front Panel

6.5.5 Point by Point DAQ Profile Example

Template Name: cRIOIO.lvproj

6.5.5.1 Objective

The intention of the subsequent template is to implement the acquisition and generation of analog

and digital signals using the cRIO platform. This template provides/generates one sample in every

period of time configured in the cRIO (sampling rate).

6.5.5.2 cRIO Hardware Elements Used

Table 40 summarizes the cRIO modules used in the chassis and its allocation.

IRIO Design Rules Document 94 www.i2a2.upm.es

Table 40 Allocation of cRIO Modules in one NI9159 Chassis

NI9159 Slot

1 2 3 4 5 6 7 8 - 14

NI9264 NI9205 NI9401 NI9477 NI9426 NI9476 NI9425 Free

Warning. The position of the cRIO modules in the chassis is

mandatory.

6.5.5.3 Signal Connection

The signal connections for properly run this example are described in section 6.5.3.

6.5.5.4 Mandatory Resources for Point by Point I/O Profile

The mandatory resources for these types of systems are described in section 6.4.1.

Fig. 67 Mandatory Resources for point by point I/O profile

6.5.5.5 Optional Resources

The optional resources of this type of profile are described in section 6.4.2. The optional resources

implemented in this example are used for

 Analog Output signal generation

IRIO Design Rules Document 95 www.i2a2.upm.es

 Analog Input signal acquisition

 Digital Output signal generation

 Digital Input signal acquisition

Fig. 68 Optional Resources Implemented in the Point by Point Example

6.5.5.6 LabVIEW Implementation for a cRIO Point by Point DAQ

Fig. 69 shows the LabVIEW project for this template.

Fig. 69 LabVIEW Project for Point by Point Example

IRIO Design Rules Document 96 www.i2a2.upm.es

Fig. 70 I/O Acquisition Loop State Machine

Table 41: Resources identification

Terminals I/O Datatype Info

AO<0-2> Control I32
If AOEnable<0-2> is true the I32 data converted to FXP is
generated in its analog output pin of the NI9205 Module.

AOEnable<0-2> Control Boolean
Enables the Analog Output signal generation for channel
0 to 2 respectively.

Debug Mode Control Boolean If False acquisition from NI9205 is performed

AI<0-2> Indicator I32 NI9205 Acquisition and converted from FXP read to I32

IRIO Design Rules Document 97 www.i2a2.upm.es

Terminals I/O Datatype Info

data types

DO0 Control Boolean NI9401 Channel 0 generation

DO1 Control Boolean NI9477 Channel 0 generation

DO2 Control Boolean NI9476 Channel 0 generation

DI0 Indicator Boolean NI9401 Channel 4 read from NI9401 Channel 0

DI1 Indicator Boolean NI9426 Channel 0 read from NI9477 Channel 0

DI2 Indicator Boolean NI9425 Channel 0 read from NI9476 Channel 0

auxDO<0-1> Control Boolean
Terminals not connected to any output hardware, only
connected internally to auxDI<0-1> respectively

auxDI<0-1> Indicator Boolean Indicators wired to aforementioned auxDO<0-1>

auxAO<0-1> Control I32
Terminals not connected to any output hardware, only
connected internally to auxAI<0-1> respectively

auxAI<0-1> Indicator I32 Indicators wired to aforementioned auxAO<0-1>

State Indicator Enum
Indicates the state of the I/O Acquisition Loop State
Machine

6.5.5.7 Host HMI Program

The host program links to the FPGA controls and indicators in order to download the Bitfile to the

target, configure its parameters and control and monitor the implemented instrument. The input

signals read are plotted in a waveform graph.

IRIO Design Rules Document 98 www.i2a2.upm.es

Fig. 71 HMI Front Panel of Point by Point Example

Fig. 72 HMI Block Diagram of Point by Point Example

IRIO Design Rules Document 99 www.i2a2.upm.es

Fig. 73 HMI Main Acquisition Loop of Point by Point Example

6.5.6 Analog Signal DAQ Profile (DMA based) Example

6.5.6.1 Objective

The intention of the subsequent template is to implement data acquisition applications acquiring

continuously block of samples using DMA.

6.5.6.2 cRIO Hardware Elements Used

Table 40 summarizes the cRIO modules used in the chassis and its allocation.

Table 42 Allocation of cRIO Modules in the NI9159 Chassis

NI9159 Slot

1 2 3 4 5 6 7 8 - 14

IRIO Design Rules Document 100 www.i2a2.upm.es

NI9159 Slot

NI9264 NI9205 NI9401 NI9477 NI9426 NI9476 NI9425 Free

Warning. The position of the cRIO modules in the chassis is

mandatory.

6.5.6.3 Signal Connection

The signal connections for properly run this example are described in section 6.5.3.

6.5.6.4 Mandatory Resources for Analog Signal DAQ Profile

The mandatory resources for these type of systems is described in section 6.3.1

Fig. 74 Mandatory Resources for Analog Signal Example

6.5.6.5 Optional Resources

Optional resources for this type of profile are described in section 6.3.3

IRIO Design Rules Document 101 www.i2a2.upm.es

Fig. 75 Optional Resources for Analog Signal Example

6.5.6.6 LabVIEW Implementation for a cRIO Analog Signal DAQ Profile

Fig. 76 shows the LabVIEW project for this template. Fig. 77 and Fig. 78 display the LabVIEW

code implementing the functionality. Table 43 summarizes the terminals used.

Fig. 76 LabVIEW Project for Analog Signal Example

IRIO Design Rules Document 102 www.i2a2.upm.es

Fig. 77 Acquisition Loop State Machine

Fig. 78 DDS Signal Generation

Table 43: Summary of the terminals

Terminals I/O Datatype Info

AO0 Control I32

If AOEnable0 is TRUE the NI9264 output

 AO0 (SGSignalType0 = 0)

 DDS Sinusoidal Signal (SGSignalType0 = 1)

 DDS Square Signal (SGSignalType0 = 2)

 DDS Triangle Signal (SGSignalType0 = 3)

IRIO Design Rules Document 103 www.i2a2.upm.es

Terminals I/O Datatype Info

AO<1-2> Control I32
If AOEnable<1-2> is true the I32 data converted to FXP is
generated in its analog output pin of the NI9205 Module.

AOEnable<0-2> Control Boolean
Enables the Analog Output signal generation for channel 0
to 2 respectively.

Debug Mode Control Boolean If False acquisition from NI9205 is performed

AI<0-2> Indicator I32
NI9205 Acquisition and converted from FXP read to I32
data types

auxAO0 Control I32
Terminal not connected to any output hardware, only
connected internally to auxAI0 respectively

auxAI0 Indicator I32 Indicator wired to aforementioned auxAO0

State Indicator Enum
Indicates the state of the I/O Acquisition Loop State
Machine

SGNo Indicator U8 See section 6.3.3

SGFreq0 Control U32 See section 6.3.3

SGAmp0 Control U16 See section 6.3.3

SGPhase0 Control U32 See section 6.3.3

SGSignalType0 Control U8 See section 6.3.3

SGUpdateRate0 Control U32 See section 6.3.3

6.5.6.7 Host HMI Program

The host program links to the FPGA controls, indicators and DMAs in order to download the bitfile

to the target, configure its parameters and control and monitor the implemented application. The

DMA-to-Host is read in the host main acquisition loop (see Fig. 80 and Fig. 81) and the input

signals are plotted in a waveform graph.

IRIO Design Rules Document 104 www.i2a2.upm.es

Fig. 79 HMI Front Panel of Analog Signal DAQ Example

IRIO Design Rules Document 105 www.i2a2.upm.es

Fig. 80 Block Diagram of Analog Signal DAQ Example

IRIO Design Rules Document 106 www.i2a2.upm.es

Fig. 81 Host Main Acquisition Loop of Analog Signal DAQ Example

IRIO Design Rules Document 107 www.i2a2.upm.es

7 LABVIEW FOR FPGA TEMPLATES

7.1.1 Location of the templates in GitHub repository

The templates are available in https://github.com/irio-

i2a2/IRIO_LabVIEW_Test_Templates/releases

7.1.2 LabVIEW template directory structure

The LabVIEW templates are organized in two separate folders: cRIO and FlexRIO. Subfolder

organization is summarized in Table 44.

Table 44: Folder organization for the templates

Templates Subfolder name Target
Template folder

organization

cRIO
dataacquisitionDMA

pointbypoint

compactRIO

(NI9159)

<tn>.lvproj

<fpga>.vi

<host>.vi

FPGA Bitfiles

datatypes

FlexRIO

FlexRIOOnlyResources

NI1483

NI5761

NI6581

nomodule

PXIe796x

PXIe7966R/NI1483

PXIe7966R/NI5761

PXIe7961R/NI6581

PXIe796x

<tn>.lvproj

<fpga>.vi

<host>.vi

FPGA Bitfiles

datatypes

7.2 FlexRIO templates

Detailed in Table 45, the definition of the main elements to take into account for managing and

developing LabVIEW templates for FlexRIO bundles are:

 Bundle: It is the set of FlexRIO devices plus a NI adapter module. Below in the table are

listed the bundles supported. Note that there are two bundles that do not use any adapter

module. These ones are templates examples that are used for testing purposes and are

templates for starting new developments.

 LabVIEW Project: It is the file path that contains the information of the LabVIEW project

for the corresponding template.

 VI Template: It contains all the LabVIEW code for defining the FlexRIO (FPGA) hardware

configuration. This file contains LabVIEW code commented with instructions, to help

FPGA project developer to start new designs.

https://github.com/irio-i2a2/IRIO_LabVIEW_Test_Templates/releases
https://github.com/irio-i2a2/IRIO_LabVIEW_Test_Templates/releases

IRIO Design Rules Document 108 www.i2a2.upm.es

 Windows Bitfile: This is the bitfile already compiled for the template defined in the VI

Template. This file is used to configure the FlexRIO device from a Windows Host.

 Linux bitfile & header file: For using the bitfiles with IRIO library, it is necessary to

generate a new bitfile and a header file from the Windows Bitfile using the NI FPGA C API

generator tool. Among the files generated only bitfile and header file (with the same name)

are required.

Table 45 FlexRIO Templates Information

Bundle LabVIEW Project VI Template Windows Bitfile
Linux Bitfile &

header file

PXIe-796XR*

FlexRIO/nomodule/

FlexRIOnoModule.l

vproj

FlexRIOnoMod

ule.vi

PXIe-

796XR_FlexRIOnoModul

e_v1_1.lvbitx

NiFpga_FlexRIOnoModule

_796X.lvbitx

NiFpga_FlexRIOnoModule

_796X.h

PXIe-796XR*

FlexRIO/nomodule/

FlexRIOonlyResour

ces.lvproj

FlexRIOonlyRe

sources.vi

PXIe-

796XR_FlexRIOonlyReso

urces_v1_1.lvbitx

NiFpga_FlexRIOonlyReso

urces_796X.lvbitx

NiFpga_FlexRIOonlyReso

urces_796X.h

PXIe-7966R

+

NI-5761**

FlexRIO/NI5761/Fl

exRIO5761.lvproj
FlexRIO5761.vi

PXIe-

796XR_FlexRIOMod5761

_v1_1.lvbitx

NiFpga_FlexRIOMod5761

_796X.lvbitx

NiFpga_FlexRIOMod5761

_796X.h

PXIe-7966R

+

NI-6581***

FlexRIO/NI6581/Fl

exRIO6581.lvproj
FlexRIO6581.vi

PXIe-

796XR_FlexRIOMod6581

_v1_1.lvbitx

NiFpga_FlexRIOMod6581

_796X.lvbitx

NiFpga_FlexRIOMod6581

_796X.h

PXIe-7966R

+

NI-1483***

FlexRIO/NI1483/FP

GA148/

FlexRIO1483_8Tap

8/FPGA1483

FlexRIO1483_8

T8.vi

PXIe-

796XR_FlexRIOMod1483

_8T8_v1_1.lvbitx

NiFpga_FlexRIOMod1483

_8T8_796X.lvbitx

NiFpga_FlexRIOMod1483

_8T8_796X.h

*The FlexRIO targets for which the templates has been generated are: PXIe-7961R, PXIe-7965R, PXIe-7966R

**The FlexRIO targets for which the templates has been generated are: PXIe-7961R, PXIe-7965R

***The FlexRIO targets for which the templates has been generated are: PXIe-7965R, PXIe-7966R

7.3 cRIO templates

The main elements to take into account for managing and developing LabVIEW templates for cRIO

are:

IRIO Design Rules Document 109 www.i2a2.upm.es

cRIO

platform
LabVIEW Project VI Template Windows Bitfile

Linux Bitfile & header

file

NI9159 cRIO/pointbypoint/crioI

O.lvproj
cRIO9159_IO.vi

cRIO9159_cRIOIO_v1_

1.lvbitx

NiFpga_cRIOIO_9159.lvbi

tx

NiFpga_cRIOIO_9159.h

NI9159
cRIO/dataacquisitionDM

A/basicrio.lvproj

cRIO9159_DAQ

DMA.vi

cRIO9159_cRIODAQD

MA_v1_1.lvbitx

NiFpga_cRIODAQDMA_

9159.lvbitx

NiFpga_cRIODAQDMA_

9159.h

IRIO Design Rules Document 110 www.i2a2.upm.es

8 USING THE LABVIEW TEMPLATES

8.1 Overview

Templates are complete LabVIEW for FPGA projects implemented using the design rules for

FlexRIO and cRIO devices. This means that are fully compliant with the IRIO design rules

methodology. The bitfiles obtained from these templates can be used to program FlexRIO/cRIO

devices using IRIO library.

The FPGA project developer is in charge of the definition of the FlexRIO/cRIO hardware

functionalities, helped by the predefined LabVIEW templates provided and taking into account the

maximum I/O resources that each device contains and.

For instance, the template FlexRIO6581, has defined the use of 8 digital lines of the adapter module

as digital outputs, and 8 digital lines as digital inputs. One functionality implemented can be to read

digital lines from one 8 bit digital port from the NI6581 adapter module, and the second

functionality can be to write to one of the 8 bit digital port. Although the NI6581 has 54 digital I/O,

only some of them have been used in the template.

Other interesting example to demonstrate the purpose of the templates is the case of

FlexRIOnoModule template. This template is implemented for a FlexRIO device without using any

adapter module (this means without using physical I/O). The template presents one waveform

generator (signal generator) connected to one DMA channel of a DMA implemented for acquiring

four analog input channels internally simulated. This demonstrates that it is not mandatory to

connect the device to any I/O module to develop applications.

The templates provide to the FPGA project developer:

 An overview of the possibilities that can be implemented using the IRIO design rules.

 A development starting point for reusing the template to achieve the final design required

for the application.

The following sections describe the basic concepts that the FPGA developer should apply to new

developments based in aforementioned templates.

8.2 Templates

In this section describes the basic steps to start working with the LabVIEW templates.

8.2.1 LabVIEW template browser description

Fig. 82 depicts the project browser corresponding to a template (in this case FlexRIO+5761). The

LabVIEW host application for all templates is called WinHostToFlexRIO.vi and it is used for testing

the FPGA code in a Windows platform. The FlexRIO targets are the devices for which this template

has been compiled. More targets can be added easily.

IRIO Design Rules Document 111 www.i2a2.upm.es

LabVIEW host application

FlexRIO targets

Fig. 82: LabVIEW Project browser

The revision history of the LabVIEW FPGA implementation for a determined device can be

checked by clicking with right mouse button on it, selecting properties, and pressing revision

history button.

8.2.2 Folder Libs

Libs folder, found inside some FPGA targets of the templates, provide the developer VIs for

implementing some predefined functionalities to the FPGA design. These VIs can be duplicated and

modified as the developer considers.

The SGTemplate.vi includes a signal generator to the FPGA which can be copied and pasted to a

determined implementation.

The diagnostic.vi is an empty VI template that has one input and three outputs. These input and

outputs terminals can be changed (type of data, and more I/O terminals can be added) according to

the requirements of the FPGA developer. Inside this VI, the developer can implement its

diagnostics (e.g. for an input).

The GlobalReg.vi contains all the global registers (terminals) that can be accessed from any part of

code implemented for the FPGA. By default the VI contains the mandatory terminals like

DAQStartStop, DMAsOverflow, etc., and other ones used for all templates. If more global registers

are required the developer can add them in this VI.

8.2.3 Target Clocks

As every design for FPGA time domain clocks are required, according to the hardware

requirements and the adapter module constrains. For this template (FlexRIO6761), apart from the

40MHz On-board Clock, there are several clocks that can be useful for new designs. Nevertheless,

more clocks derived from the ones that are present in the project browser can be added.

8.2.4 DMAs to Host

64bit DMA-to-Host resources can be found depending on the template, named as the IRIO design

rules stipulate. Additional DMAs or internal FIFOS can be added up to the FPGA hardware

resources limit.

IRIO Design Rules Document 112 www.i2a2.upm.es

8.2.5 NI Adapter module

Extending the IO Module item, all the terminals provided for the IO module CLIP, are listed. To

use them, drag and drop them into the VI FPGA design. If another Adapter module is required, then

click right mouse button on the IO module icon, and then select properties, the menu will appear,

and on the General category, select the IO module required, and the desired component level IP for

that module.

8.2.6 Build specifications

For building the bitfile for the corresponding main VI (in this case FlexRIO5761), it is required to

define a build specification.

8.2.7 LabVIEW template VI

8.2.7.1 Control panel

After clicking on the LabVIEW template VI, the control panel will appear. Here, depending on the

target (FlexRIO or cRIO) some differences can be found. The developer will have to configure

some mandatory controls in order to fit the developer requirements. After applying new values on

the controls, it is required to click on it with the right mouse button and select: Data operations->

Make Current Value Default.

Platform Tab: Select the type of target device for which the bitfile is going to be built (Fig. 83).

Fig. 83: Selection of the hardware platform

Mandatory Resources Tab: Here there are mandatory controls and indicators that the VI must have

according to this document. The FPGA developer has to insert the Fref value, the DevProfile and if

required, change the FPGAVIversion. DAQStartStop and DebugMode have to be initialized to false.

Fig. 84: Mandatory resources

Data Acquisition tab: The developer has to fill array controls for DMA-to-Host configuration. This

means that not only the content of the arrays will be configured, but also the size of the arrays.

There are four arrays: DMATtoHOSTNCh, DMATtoHOSTFrameType, DMATtoHOSTSampleSize,

IRIO Design Rules Document 113 www.i2a2.upm.es

and DMATtoHOSTBlockNWords. These arrays must be configured with the same size, according

to the number of DMAs used. The value configured at every array address position of every array is

applied to the corresponding DMA. In the FlexRIO5761 template, the values by default are:

 Size of 1 for every array. This means that there is only one DMA in the FPGA design.

 4 channels are packaged in a 64 bit word DMA.

 FrameType, to configure the packing of the data, in this case type 0.

 Size in bytes used per channel is: 2 bytes.

 Number of words of 64bit, to tell the IRIO driver the amount of data to form an entire data

block, in this case 4096 64 bit words.

The developer should change these values according to its requirements. The default values for

DMAToHOSTEnable0 and DMATtoHostOverflows are false and 0.

Fig. 85: Data acquisition tab.

Optional Resources tab:

Present here there additional controls and indicators to provide extra functionalities to the FPGA

design. They have to be compliant with the IRIO design rules (name nomenclature, and data type).

The developer should insert here all the additional controls and indicators that are going to be added

to the template.

IRIO Design Rules Document 114 www.i2a2.upm.es

Fig. 86: Optional Resources

8.2.7.2 Block diagram

On the left side of the block diagram, there is the main part of LabVIEW code that will be

“executed” in the FPGA (see Fig. 87). Here it is the initialization of some indicators that will

provide information to the IRIO library. The second step of the sequence structure, checks if the

adapter module connected to the FlexRIO had been recognized and correctly initialized.

On the left side of the block diagram the code to perform the initialization is present, the

initialization of some indicators and the identification and initialization of the adapter module/s

connected (see Fig. 87).

IRIO Design Rules Document 115 www.i2a2.upm.es

Fig. 87: Initialization.

Warning. The values read by software layer in the initialization phase are

read from terminals in the control panel.

Once the adapter module is initialized, the user can add the code supporting the DMA acquisition.

This is represented in Fig. 88 and can be replicated as many times as DMAs are in use.

Fig. 89 displays the details of what have to be modified when adding a new DMA.

 Constant value to set the number of the DMA that the DAQ DMA module corresponds to.

 Select the number of channels required.

 Marked in blue, you have to select the corresponding intermediate internal FIFO. The

developer should add as many intermediate FIFOs as DMAs have been included in the

design. The name chosen of the intermediate FIFOs is a developer decision, but FIFO<N> is

recommended.

 Under the Green Square, you have to choose the DMA. This one has to be compliant with

the IRIO design rules.

IRIO Design Rules Document 116 www.i2a2.upm.es

Fig. 88: Implementation of the DMA for FlexRIO platform.

Fig. 89: Detail of DMA implementation in the FPGA.

If more than one DMA is required, then “DMATtoHOSTSamplingRate<N>” controls have to be

added into the timed loop that contains global variables, with the corresponding SamplingRate<N>

global variable connected to (see Fig. 90).

IRIO Design Rules Document 117 www.i2a2.upm.es

Fig. 90: SamplingRate terminals

In the global variables timed loop there are the global references to the controls of the signal

generators. If these ones are not going to be used, they can be removed. You can add as many signal

generators as the design requires and the FPGA resources permit. The signal generator template can

be taken from its VI file, executing a “copy and paste” into the main VI. After that, the controls, and

indicators, should be changed by the corresponding global variables (Fig. 91).

Fig. 91: Inserting the signal generator code in the VI.

Finally, the template has two loops, with a basic example using auxiliary analog and digital inputs

and outputs. The developer can add or remove under the requirements of the design, and implement

any logic or algorithm between the input/output terminals, as the example below shows (see Fig.

92).

IRIO Design Rules Document 118 www.i2a2.upm.es

Fig. 92: Example of code for using auxiliary terminals

IRIO Design Rules Document 119 www.i2a2.upm.es

9 NI FPGA INTERFACE C API GENERATOR

9.1 Executing the application

In the LabVIEW project window, the user must select the VI with the FPGA application and right

click on it, in the pop-up menu, the user selects “Launch C API Generator”, a window immediately

appears, the user must select the name of the bitfile with the design of the FPGA and an output

directory for the headers file that will be generated with this application. Finally, the user must click

on the Generate button.

Fig. 93: Launching the C API Generator application.

IRIO Design Rules Document 120 www.i2a2.upm.es

Fig. 94: Application C API generator in LabVIEW FPGA.

This program outputs four files, but only 2 are necessary. The first file is a renamed version of the

bitfile with the name NiFpga_”proyectName”.lvbitx, the second one is a header file with the name

NiFpga_”proyectName”.h, which includes the identification of the different control and indicators

and the resources used in the FPGA design.

The header file contains many definitions with the different enumerated data types and their

assignments, which will be used by the NI-RIO EPICS support driver to obtain the information for

the FPGA.

9.2 Header file generated.

The NI FPGA INTERFACE C API Generator outputs a header file that will be used by the EPICS

applications. This is an example of this header file:

[NOTE]: Every VI design must be compiled using the LabVIEW/FPGA

environment. The lvbitx file obtained must be used with the C API generator that

outputs the specific header file.

[NOTE]: The enumerated data types are identified using the following criteria:

NiFpga_”vi name”_TerminalType_& DataType_Terminal_Name. The terminal

data type will be Control or Indicator followed by the terminal data type:

Boolean, integer, etc.

IRIO Design Rules Document 121 www.i2a2.upm.es

/*

 * Generated with the FPGA Interface C API Generator 13.0.0

 * for NI-RIO 13.0.0 or later.

 */

#ifndef __NiFpga_cRIODAQ_h__

#define __NiFpga_cRIODAQ_h__

#ifndef NiFpga_Version

 #define NiFpga_Version 1300

#endif

#include "NiFpga.h"

/**

 * The filename of the FPGA bitfile.

 *

 * This is a #define to allow for string literal concatenation. For example:

 *

 * static const char* const Bitfile = "C:\\" NiFpga_cRIODAQ_Bitfile;

 */

#define NiFpga_cRIODAQ_Bitfile "NiFpga_cRIODAQ.lvbitx"

/**

 * The signature of the FPGA bitfile.

 */

static const char* const NiFpga_cRIODAQ_Signature =

"8205846622339C4D9F1D2927E16981C5";

typedef enum

{

 NiFpga_cRIODAQ_IndicatorBool_InitDone = 0x8152,

 NiFpga_cRIODAQ_IndicatorBool_cRIOModulesOK = 0x8162,

} NiFpga_cRIODAQ_IndicatorBool;

typedef enum

{

 NiFpga_cRIODAQ_IndicatorU8_DevProfile = 0x815A,

 NiFpga_cRIODAQ_IndicatorU8_DevQualityStatus = 0x816E,

 NiFpga_cRIODAQ_IndicatorU8_Platform = 0x817A,

 NiFpga_cRIODAQ_IndicatorU8_SGNo = 0x810E,

} NiFpga_cRIODAQ_IndicatorU8;

typedef enum

{

 NiFpga_cRIODAQ_IndicatorI16_DevTemp = 0x815E,

} NiFpga_cRIODAQ_IndicatorI16;

typedef enum

{

 NiFpga_cRIODAQ_IndicatorU16_state = 0x8192,

} NiFpga_cRIODAQ_IndicatorU16;

typedef enum

{

 NiFpga_cRIODAQ_IndicatorI32_AI0 = 0x8184,

 NiFpga_cRIODAQ_IndicatorI32_AI1 = 0x8188,

 NiFpga_cRIODAQ_IndicatorI32_auxAI0 = 0x8180,

IRIO Design Rules Document 122 www.i2a2.upm.es

} NiFpga_cRIODAQ_IndicatorI32;

typedef enum

{

 NiFpga_cRIODAQ_IndicatorU32_Fref = 0x8154,

} NiFpga_cRIODAQ_IndicatorU32;

typedef enum

{

 NiFpga_cRIODAQ_ControlBool_AOEnable0 = 0x8116,

 NiFpga_cRIODAQ_ControlBool_AOEnable1 = 0x8132,

 NiFpga_cRIODAQ_ControlBool_DAQStartStop = 0x8176,

 NiFpga_cRIODAQ_ControlBool_DMATtoHOSTEnable0 = 0x8146,

 NiFpga_cRIODAQ_ControlBool_DebugMode = 0x8172,

} NiFpga_cRIODAQ_ControlBool;

typedef enum

{

 NiFpga_cRIODAQ_ControlU8_SGSignalType0 = 0x811A,

} NiFpga_cRIODAQ_ControlU8;

typedef enum

{

 NiFpga_cRIODAQ_ControlU16_DMATtoHOSTOverflows = 0x814A,

 NiFpga_cRIODAQ_ControlU16_DMATtoHOSTSamplingRate0 = 0x8142,

 NiFpga_cRIODAQ_ControlU16_SGAmp0 = 0x812A,

} NiFpga_cRIODAQ_ControlU16;

typedef enum

{

 NiFpga_cRIODAQ_ControlI32_AO0 = 0x811C,

 NiFpga_cRIODAQ_ControlI32_AO1 = 0x8110,

 NiFpga_cRIODAQ_ControlI32_auxAO0 = 0x817C,

} NiFpga_cRIODAQ_ControlI32;

typedef enum

{

 NiFpga_cRIODAQ_ControlU32_LoopuSec = 0x8194,

 NiFpga_cRIODAQ_ControlU32_SGFreq0 = 0x8124,

 NiFpga_cRIODAQ_ControlU32_SGPhase0 = 0x8120,

 NiFpga_cRIODAQ_ControlU32_SGUpdateRate0 = 0x812C,

 NiFpga_cRIODAQ_ControlU32_TabControl = 0x818C,

} NiFpga_cRIODAQ_ControlU32;

typedef enum

{

 NiFpga_cRIODAQ_IndicatorArrayU8_DMATtoHOSTFrameType = 0x813A,

 NiFpga_cRIODAQ_IndicatorArrayU8_DMATtoHOSTSampleSize = 0x813E,

 NiFpga_cRIODAQ_IndicatorArrayU8_FPGAVIversion = 0x816A,

} NiFpga_cRIODAQ_IndicatorArrayU8;

typedef enum

{

 NiFpga_cRIODAQ_IndicatorArrayU8Size_DMATtoHOSTFrameType = 1,

 NiFpga_cRIODAQ_IndicatorArrayU8Size_DMATtoHOSTSampleSize = 1,

 NiFpga_cRIODAQ_IndicatorArrayU8Size_FPGAVIversion = 2,

} NiFpga_cRIODAQ_IndicatorArrayU8Size;

IRIO Design Rules Document 123 www.i2a2.upm.es

typedef enum

{

 NiFpga_cRIODAQ_IndicatorArrayU16_DMATtoHOSTBlockNWords = 0x814E,

 NiFpga_cRIODAQ_IndicatorArrayU16_DMATtoHOSTNCh = 0x8136,

 NiFpga_cRIODAQ_IndicatorArrayU16_InsertedIOModulesID = 0x8164,

} NiFpga_cRIODAQ_IndicatorArrayU16;

typedef enum

{

 NiFpga_cRIODAQ_IndicatorArrayU16Size_DMATtoHOSTBlockNWords = 1,

 NiFpga_cRIODAQ_IndicatorArrayU16Size_DMATtoHOSTNCh = 1,

 NiFpga_cRIODAQ_IndicatorArrayU16Size_InsertedIOModulesID = 16,

} NiFpga_cRIODAQ_IndicatorArrayU16Size;

typedef enum

{

 NiFpga_cRIODAQ_TargetToHostFifoU64_DMATtoHOST0 = 0,

} NiFpga_cRIODAQ_TargetToHostFifoU64;

#endif

